Circuits, Systems, and Signal Processing

, Volume 31, Issue 5, pp 1577–1597 | Cite as

Comparative Analysis of Tunable Q-Enhancement Filter Cell Topologies in a 2.4 GHz LNA

  • Bogdan Georgescu
  • Joshua Nakaska
  • Ivars Finvers
  • Fadhel Ghannouchi
Article

Abstract

The special LNA topologies resulting from loading a simple LNA with a set of Q-enhanced inductors are analyzed and compared. The Q of the on-chip spiral inductors that form the LNA load is enhanced by using a negative resistance realized with a cross-coupled differential pair degenerated and biased in various ways. The performance of the LNA is presented for the following types of Q-enhancement circuit: ideal negative resistor (ideal cell), tail-biased non-degenerated cross-coupled differential pair (classic cell), tail-biased resistively degenerated cross-coupled differential pair (resistive cell), tail-biased LC degenerated cross-coupled differential pair (B-cell), self-biased LC degenerated cross-coupled differential pair (BB-cell). The analysis focuses on the benefits of each cell related to s-parameter response, noise and linearity and the interdependency of Q vs. center frequency during tuning. Low voltage design challenges are addressed by presenting the advantages of the novel self-biased LC degenerated cross-coupled differential pair (BB-cell).

Keywords

LC tank Q-enhancement Tunable circuits LNA 

References

  1. 1.
    V. Aparin, P. Katzin, Active GaAs MMIC band-pass filters with automatic frequency tuning and insertion loss control. IEEE J. Solid-State Circuits 10, 1068–1073 (1995) CrossRefGoogle Scholar
  2. 2.
    C. Barth, I.R. Linscott, U.S. Inan, A double notch RF filter architecture for saw-less GPS receivers, in Circuits and Systems (ISCAS), IEEE International Symposium on (2011), pp. 1804–1807. doi:10.1109/ISCAS.2011.5937935 CrossRefGoogle Scholar
  3. 3.
    D. Bormann, T. Werth, S. Kaehlert, C. Schmits, S. Heinen, A fully integrated q-enhanced notch filter LNA for TX blocker suppression in FDD systems, in Radio-Frequency Integration Technology, 2009. RFIT 2009. IEEE International Symposium on (2009), pp. 154–157. doi:10.1109/RFIT.2009.5383699 CrossRefGoogle Scholar
  4. 4.
    D. Bormann, T. Werth, N. Zimmermann, R. Wunderlich, S. Heinen, A comparison of bandwidth setting concepts for q-enhanced lc-tanks in deep-sub micron CMOS processes, in Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on (2008), pp. 726–729. doi:10.1109/ICECS.2008.4674956 CrossRefGoogle Scholar
  5. 5.
    K. Christensen, T. Lee, E. Bruun, A high dynamic range programmable CMOS front-end filter with a tuning range from 1850–2400 MHz, in Analog Integrated Circuits and Signal Processing (Kluwer Academic, Norwell, 2005) Google Scholar
  6. 6.
    Freescale Semiconductors, MBC13916 general purpose SiGe: C RF cascode low noise amplifier (2006). http://www.freescale.com/
  7. 7.
    B. Georgescu, I. Finvers, F. Ghannouchi, 2 GHz Q-enhanced active filter with low passband distortion and high dynamic range. IEEE J. Solid-State Circuits 9, 2029–2039 (2006) CrossRefGoogle Scholar
  8. 8.
    X. He, W.B. Kuhn, A 2.5-GHz low-power, high dynamic range self-tuned Q-enhanced LC filter in SOI. IEEE J. Solid-State Circuits 8, 1618–1628 (2005) Google Scholar
  9. 9.
    W.B. Kuhn, Design of integrated, low power, radio receivers in BiCMOS technologies. PhD dissertation, Virginia Polytechnic Institute and State University (1995). http://scholar.lib.vt.edu/theses/available/etd-81197-164118/unrestricted/KUHN.PDF
  10. 10.
    W.B. Kuhn, A. Elshabini-Riad, F.W. Stephenson, Centre-tapped spiral inductors for monolithic bandpass filter. Electron. Lett. 1, 625–626 (1995) CrossRefGoogle Scholar
  11. 11.
    W.B. Kuhn, D. Nobbe, D. Kelly, A.W. Osborn, Dynamic range performance of on-chip RF bandpass filters. IEEE Trans. Circuits. Syst. II, pp. 685–694 (2003) Google Scholar
  12. 12.
    T.H. Lee, The Design of CMOS Radio-frequency Integrated Circuits (Cambridge Univ. Press, New York, 1998) Google Scholar
  13. 13.
    D. Li, Y. Tsividis, A 1.9 GHz Si active LC filter with on-chip automatic tuning, in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers (2001), pp. 368–369 Google Scholar
  14. 14.
    D. Li, Y. Tsividis, Design techniques for automatically tuned integrated gigahertz-range active LC filters. IEEE J. Solid-State Circuits, pp. 967–977 (2002) Google Scholar
  15. 15.
    J. Nakaska, J. Haslett, 2 GHz automatically tuned Q-enhanced CMOS bandpass filter, in Microwave Symposium, 2007. IEEE/MTT-S International (2007), pp. 1599–1602. doi:10.1109/MWSYM.2007.379991 CrossRefGoogle Scholar
  16. 16.
    H. Pekau, J. Kulyk, J.W. Haslett, L. Belostotski, Linearization techniques for cross-coupled transconductor circuits used in integrated q-enhanced lc filters, in Electrical and Computer Engineering, 2006. CCECE ’06. Canadian Conference on (2006), pp. 541–546. doi:10.1109/CCECE.2006.277739 CrossRefGoogle Scholar
  17. 17.
    W.M. Sansen, Analog Design Essentials (Springer, Berlin, 2006) Google Scholar
  18. 18.
    C. Schmits, T. Werth, J. Hausner, A new q-enhancement architecture for saw-less communication receiver in 65-nm CMOS, in Radio-Frequency Integration Technology, 2009. RFIT 2009. IEEE International Symposium on (2009), pp. 158–161. doi:10.1109/RFIT.2009.5383743 CrossRefGoogle Scholar
  19. 19.
    C. Schultz, H. Doppke, M. Hammes, R. Kreienkamp, L. Lemke, S. van Waasen, An l-band receiver-front-end-architecture using adaptive q-enhancement techniques in 65nm CMOS as enabler for single-saw GPS receivers, in Radio Frequency Integrated Circuits Symposium (RFIC) (IEEE, New York, 2011), pp. 1–4. doi:10.1109/RFIC.2011.5940615 Google Scholar
  20. 20.
    P. Wambacq, W.M. Sansen, Distortion Analysis of Analog Integrated Circuits (Kluwer Academic, Norwell, 1998) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bogdan Georgescu
    • 1
  • Joshua Nakaska
    • 2
  • Ivars Finvers
    • 3
  • Fadhel Ghannouchi
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.HoustonUSA
  3. 3.CalgaryCanada

Personalised recommendations