Circuits, Systems, and Signal Processing

, Volume 31, Issue 4, pp 1279–1296 | Cite as

Circuits with Oscillatory Hierarchical Farey Sequences and Fractal Properties

Article

Abstract

We present two dual oscillating circuits having a wide spectrum of dynamical properties but relatively simple topologies. Each circuit has five bifurcating parameters, one nonlinear element of cubic current–voltage characteristics, one controlled element, LCR components and a constant biasing source. The circuits can be considered as two coupled oscillators (linear and nonlinear) that form dual jerk circuits. Bifurcation diagrams of the circuits show a rather surprising result that the bifurcation patterns are of the Farey sequence structure and the circuits’ dynamics is of a fractal type. The circuits’ fractal dimensions of the box counting (capacity) algorithm, Kaplan–Yorke (Lyapunov) type and its modified (improved) version are all estimated to be between 2.26 and 2.52. Our analysis is based on numerical calculations which confirm a close relationship of the circuits’ bifurcation patterns with those of the Ford circles and Stern–Brocot trees.

Keywords

Oscillating circuits Bifurcations Singularly perturbed systems Farey sequence Stern–Brocot tree Ford circles Fractals 

References

  1. 1.
    R.E. Beardmore, R. Laister, The flow of a differential-algebraic equation near a singular equilibrium. SIAM J. Matrix Anal. 24, 106–120 (2002) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    M. Brøns, M. Krupa, M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63 (2006) Google Scholar
  3. 3.
    K.E. Chlouverakis, J.C. Sprott, A comparison of correlation and Lyapunov dimensions. Physica D 200, 156–164 (2005) MATHCrossRefGoogle Scholar
  4. 4.
    S. De Brouwer, D.H. Edwards, T.M. Griffith, Simplifications of the quasiperiodic route to chaos in agonist-induced vasomotion by iterative circle maps. Am. J. Physiol. 274, H1315–H1326 (1998) Google Scholar
  5. 5.
    R. Eichhorn, S.J. Linz, P. Hänggi, Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows. Phys. Rev. E 58, 7151–7164 (1998) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Focus issue: Mixed mode oscillations: experiment, computation, and analysis. Chaos 18(1) (2008) Google Scholar
  7. 7.
    L.R. Ford, Fractions. Am. Math. Mon. 45, 586–601 (1938) CrossRefGoogle Scholar
  8. 8.
    J.G. Freire, J.A.C. Gallas, Stern–Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer–van der Pol and FitzHugh–Nagumo models of excitable systems. Phys. Lett. A 375, 1097–1103 (2011) CrossRefGoogle Scholar
  9. 9.
    M. Krupa, N. Popovic, N. Kopell, Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7, 361–420 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R.B. Leipnik, T.A. Newton, Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–67 (1981) MathSciNetCrossRefGoogle Scholar
  12. 12.
    S.J. Linz, Newtonian jerky dynamics: some general properties. Am. J. Phys. 66, 1109–1114 (1998) CrossRefGoogle Scholar
  13. 13.
    W. Marszalek, Fold points and singularities in Hall MHD differential-algebraic equations. IEEE Trans. Plasma Sci. 37, 254–260 (2009) CrossRefGoogle Scholar
  14. 14.
    W. Marszalek, T. Amdeberhan, R. Riaza, Singularity crossing phenomena in DAEs: a two-phase fluid flow application case study. Comput. Math. Appl. 49, 303–319 (2005) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    W. Marszalek, Z. Trzaska, Singularity-induced bifurcations in electrical power systems. IEEE Trans. Power Syst. 20, 312–320 (2005) CrossRefGoogle Scholar
  16. 16.
    W. Marszalek, Z. Trzaska, Mixed-mode oscillations in a modified Chua’s circuit. Circuits, Systems. Signal Process. 29, 1075–1087 (2010) MathSciNetMATHGoogle Scholar
  17. 17.
    J. Maselko, L. Swinney, Complex periodic oscillations and Farey arithmetic in the Belousov–Zhabotinskii reaction. J. Chem. Phys. 85, 6430–6441 (1986) MathSciNetCrossRefGoogle Scholar
  18. 18.
    B. Munmuangsaen, B. Srisuchinwong, J.C. Sprott, Generalization of the simplest autonomous chaotic system. Phys. Lett. A 375, 1445–1450 (2011) CrossRefGoogle Scholar
  19. 19.
    V. Petrov, S.K. Scott, K. Showalter, Mixed-mode oscillations in chemical systems. J. Chem. Phys. 97, 6191–6198 (1992) CrossRefGoogle Scholar
  20. 20.
    L. Pivka, C.W. Wu, A. Huang, Chua’s oscillator: a compendium of chaotic phenomena. J. Franklin Inst. 331B, 705–741 (1994) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    R. Riaza, S.L. Campbell, W. Marszalek, On singular equilibria of index-1 DAEs. Circuits Syst. Signal Process. 19, 131–157 (2000) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    J.C. Sprott, A new chaotic jerk circuits. IEEE Trans. Circuits Syst. II, Express Briefs. 58, 240–243 (2011) CrossRefGoogle Scholar
  23. 23.
    M. Wechselberger, Existence and bifurcations of canards in R 3 in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    N.J. Wildberger, Evolution versus intelligent design: a mathematician’s view. http://web.maths.unsw.edu.au/norman/papers/IntelligentDesignhtml/IntelligentDesign1.htm (2008). Accessed 19 Dec. 2011
  25. 25.
    X.-X. Xu, S.-J. Ma, P.-T. Huang, New concepts in electromagnetic jerky dynamics and their applications in transient processes of electric circuit. Prog. Electromagn. Res. M. 8, 181–194 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Engineering and Information SciencesDeVry UniversityNorth BrunswickUSA

Personalised recommendations