Circuits, Systems, and Signal Processing

, Volume 31, Issue 2, pp 565–581 | Cite as

Passive Fault-Tolerant Control Design for Near-Space Hypersonic Vehicle Dynamical System

  • Zhifeng Gao
  • Bin Jiang
  • Peng Shi
  • Jianye Liu
  • Yufei Xu


In this paper, an observer-based passive fault-tolerant control (FTC) scheme is proposed for a near-space hypersonic vehicle (NSHV) dynamical system with both parameter uncertainty and actuator faults. The parameter uncertainty is assumed to be norm-bounded, and the possible fault of each actuator is described by a variable varying within a given interval. Our aim is to design an observer-based FTC law such that, for the admissible parameter uncertainty and possible actuator faults, the resulting closed-loop system is asymptotically stable with a given disturbance attenuation level γ. The unknown gain matrices are characterized in terms of the solutions to some linear matrix inequalities (LMIs) which can be readily solved using standard software packages. The FTC scheme presented in this study is finally demonstrated via simulation on a linearized NSHV dynamical system to illustrate the effectiveness.


Passive fault-tolerant control (FTC) Near-space hypersonic vehicle (NSHV) Actuator faults Parameter uncertainty 



This work was partially supported by the National Natural Science Foundation of China (91116018, 60804011, 60904001), the Innovative Scientific Research Team Fund of Jiangsu Province, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Graduate Innovation Research Foundation of Jiangsu Province (CX10B–111Z), and the Engineering and the Physical Sciences Research Council, UK (EP/F029195). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which helped to improve the presentation.


  1. 1.
    H. Buschek, A.J. Calise, Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. AIAA J. Guid. Control Dyn. 20(1), 42–48 (1997) CrossRefGoogle Scholar
  2. 2.
    M. Corless, J. Tu, State and input estimation for a class of uncertain systems. Automatica 34(6), 757–764 (1998) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    M.L. Corradini, G. Orlando, Actuator failure identification and compensation through sliding modes. IEEE Trans. Control Syst. Technol. 15(1), 184–190 (2007) MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Dong, Y. Hou, Y. Zhang, Q. Wang, Model reference adaptive switching control of a linearized hypersonic flight vehicle model with actuator saturation. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224(3), 289–303 (2010) CrossRefGoogle Scholar
  5. 5.
    B. Fidan, M. Mirmirani, P.A. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. AIAA Guidance, Navigation and Control Conference, Paper Number: AIAA 2003–7081 Google Scholar
  6. 6.
    Z.F. Gao, B. Jiang, P. Shi, Y.F. Xu, Fault accommodation for near space vehicle attitude dynamics via T–S fuzzy models. Int. J. Innov. Comput., Inf. Control 6(11), 4843–4856 (2010) Google Scholar
  7. 7.
    Y.Y. Guo, B. Jiang, P. Shi, Delay-dependent adaptive reconfiguration control in the presence of input saturation and actuator faults. Int. J. Innov. Comput., Inf. Control 6(4), 1873–1882 (2010) Google Scholar
  8. 8.
    D. Huang, S.K. Nguang, Robust fault estimator design for uncertain networked control systems with random time delays: An ILMI approach. Inf. Sci. 180(3), 465–480 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    B. Jiang, Z.F. Gao, P. Shi, Y.F. Xu, Adaptive fault-tolerant tracking control of near space vehicle using Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2010) CrossRefGoogle Scholar
  10. 10.
    J. Klamka, Controllability of Dynamical Systems (Kluwer Academic, Dordrecht, 1991) MATHGoogle Scholar
  11. 11.
    B. Liang, G.R. Duan, Observer-based \(\mathcal{H}_{\infty}\) fault-tolerant control against actuator failures for descriptor systems, in Proceedings of the Fifth World Congress on Intelligent Control and Automation (2004), pp. 1007–1011 CrossRefGoogle Scholar
  12. 12.
    Y.W. Liang, D.C. Liaw, T.C. Lee, Reliable control of nonlinear systems. IEEE Trans. Autom. Control 45(4), 706–710 (2000) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Y.W. Liang, S.D. Xu, C.L. Tsai, Study of VSC reliable designs with application to spacecraft attitude stabilization. IEEE Trans. Control Syst. Technol. 15(2), 332–338 (2007) CrossRefGoogle Scholar
  14. 14.
    F. Liao, J.L. Wang, G.H. Yang, Reliable robust flight tracking control: An LMI approach. IEEE Trans. Control Syst. Technol. 10(1), 76–89 (2002) CrossRefGoogle Scholar
  15. 15.
    C.H. Lien, K.W. Yu, LMI optimization approach on robustness and \(\mathcal{H}_{\infty}\) control analysis for observer-based control of uncertain systems. Chaos Solitons Fractals 36(3), 617–627 (2008) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    C.H. Lien, K.W. Yu, Y.F. Lin, Y.J. Chung, L.Y. Chung, Robust reliable \(\mathcal{H}_{\infty}\) control for uncertain nonlinear systems via LMI approach. Appl. Math. Comput. 198(1), 453–462 (2008) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    L.Y. Meng, B. Jiang, Robust active fault-tolerant control for a class of uncertain nonlinear systems with actuator faults. Int. J. Innov. Comput., Inf. Control 6(6), 2637–2644 (2010) Google Scholar
  18. 18.
    P. Shi, E.K. Boukas, S.K. Nguang, X.P. Guo, Robust disturbance attenuation for discrete-time active fault tolerant control systems with uncertainties. Optim. Control Appl. Methods 24(2), 85–101 (2003) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    R.J. Veillette, J.V. Medanic, W.R. Perkins, Design of reliable control systems. IEEE Trans. Autom. Control 37(3), 290–304 (1992) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    M. Vidyasagar, N. Viswanadham, Reliable stabilization using a multi-controller configuration. Automatica 21(5), 599–602 (1985) CrossRefGoogle Scholar
  21. 21.
    Q. Wang, R.F. Stengel, Robust nonlinear control of a hypersonic aircraft. AIAA J. Guid. Control Dyn. 23(4), 577–585 (2000) CrossRefGoogle Scholar
  22. 22.
    Z.D. Wang, G.L. Wei, G. Feng, Reliable \(\mathcal{H}_{\infty}\) control for discrete-time piecewise linear systems with infinite distributed delays. Automatica 45(12), 2991–2994 (2009) MATHCrossRefGoogle Scholar
  23. 23.
    H.J. Xu, M.D. Mirmirani, P.A. Ioannou, Adaptive sliding mode control design for a hypersonic flight vehicle. AIAA J. Guid. Control Dyn. 27(5), 829–838 (2004) CrossRefGoogle Scholar
  24. 24.
    Y.L. Xue, C.S. Jiang, Trajectory linearization control of an aerospace vehicle based on RBF neural network. J. Syst. Eng. Electron. 19(4), 799–805 (2008) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    G.H. Yang, J.L. Wang, Y.C. Soh, Reliable \(\mathcal{H}_{\infty}\) controller design for linear systems. Automatica 37(5), 717–725 (2001) MathSciNetMATHGoogle Scholar
  26. 26.
    Y.W. Zhang, T. Hesketh, H. Wang, J.C. Liu, D. Xiao, Actuator fault compensation for nonlinear systems using adaptive tracking control. Circuits Syst. Signal Process. 29(3), 419–430 (2010) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhifeng Gao
    • 1
  • Bin Jiang
    • 1
  • Peng Shi
    • 2
    • 3
  • Jianye Liu
    • 1
  • Yufei Xu
    • 1
  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Computing and Mathematical SciencesUniversity of GlamorganPontypriddUK
  3. 3.School of Engineering and ScienceVictoria UniversityMelbourneAustralia

Personalised recommendations