Advertisement

Circuits, Systems, and Signal Processing

, Volume 31, Issue 4, pp 1379–1395 | Cite as

Optimal Pilot Pattern Design for Compressed Sensing-Based Sparse Channel Estimation in OFDM Systems

  • Xueyun He
  • Rongfang SongEmail author
  • Wei-Ping Zhu
Article

Abstract

The frequency selective channel estimation problem in orthogonal frequency division multiplexing (OFDM) systems is investigated from the perspective of compressed sensing (CS). By minimizing the mutual coherence or the modified mutual coherence of the measurement matrix in CS theory, two criteria for optimizing the pilot pattern for CS-based channel estimation are proposed. Simulation results show that using the pilot pattern designed by either of the two criteria gives a much better performance than using other pilot patterns in terms of the mean-squared error of the channel estimate as well as the bit error rate of the system. Moreover, the optimal pilot pattern designed by minimizing the modified mutual coherence offers a larger performance gain than that obtained by minimizing the mutual coherence.

Keywords

OFDM Channel estimation Compressed sensing Mutual coherence Pilot pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bajwa, J. Haupt, A. Sayeed, R. Nowak, Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010) CrossRefGoogle Scholar
  2. 2.
    R.G. Baranluk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007) CrossRefGoogle Scholar
  3. 3.
    C.R. Berger, S. Zhou, W. Chen, P. Willett, Sparse channel estimation for OFDM: Over-complete dictionaries and super-resolution, in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Perugia, Italy, pp. 196–200 (2009) CrossRefGoogle Scholar
  4. 4.
    C.R. Berger, S. Zhou, J.C. Preisig, P. Willett, Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans. Signal Process. 58(3), 1708–1721 (2010) MathSciNetCrossRefGoogle Scholar
  5. 5.
    X. Cai, G.B. Giannakis, Error probability minimization pilots for OFDM with M-PSK modulation over Rayleigh-fading channels. IEEE Trans. Veh. Technol. 53(1), 146–155 (2004) CrossRefGoogle Scholar
  6. 6.
    E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005) CrossRefGoogle Scholar
  7. 7.
    E.J. Candès, T. Tao, Near-optimal signal recovery from random projections and universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006) CrossRefGoogle Scholar
  8. 8.
    E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006) zbMATHCrossRefGoogle Scholar
  9. 9.
    E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006) zbMATHCrossRefGoogle Scholar
  10. 10.
    S. Coleri, M. Ergen, A. Puri, A. Bahai, Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Trans. Broadcast. 48(3), 223–229 (2002) CrossRefGoogle Scholar
  11. 11.
    D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006) MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.L. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006) MathSciNetCrossRefGoogle Scholar
  13. 13.
    X. He, R. Song, K. Zhou, Study of compressive sensing based sparse channel estimation in OFDM systems. J. Nanjing Univ. Posts Telecommun. Nat. Sci. 30(2), 60–65 (2010) Google Scholar
  14. 14.
    D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010) CrossRefGoogle Scholar
  15. 15.
    J.L. Paredes, G.R. Arce, Z. Wang, Ultra-Wideband compressed sensing: channel estimation. IEEE J. Sel. Top. Signal Process. 1(3), 383–395 (2007) CrossRefGoogle Scholar
  16. 16.
    M.R. Raghavendra, K. Giridhar, Improving channel estimation in OFDM systems for sparse multipath channels. IEEE Signal Process. Lett. 12(1), 52–55 (2005) CrossRefGoogle Scholar
  17. 17.
    G. Taubock, F. Hlawatsch, A compressed sensing technique for OFDM channel estimation in mobile environments: exploiting channel sparsity for reducing pilots, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP’08), Las Vegas, NV (2008), pp. 2885–2888 CrossRefGoogle Scholar
  18. 18.
    G. Taubock, F. Hlawatsch, D. Eiwen, H. Raunhut, Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing. IEEE J. Sel. Top. Signal Process. 4(2), 255–271 (2010) CrossRefGoogle Scholar
  19. 19.
    J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007) MathSciNetCrossRefGoogle Scholar
  20. 20.
    J.A. Tropp, D. Needell, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    C.J. Wu, D.W. Lin, Sparse channel estimation for OFDM transmission based on representative subspace fitting, in Proc. IEEE 61st Veh. Technol. Conf., vol. 1 (2005), pp. 495–499 CrossRefGoogle Scholar
  22. 22.
    W. Zhang, X. Xia, P.C. Ching, Optimal training and pilot pattern design for OFDM systems in Rayleigh fading. IEEE Trans. Broadcast. 52(4), 505–514 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.College of Telecommunication and Information EngineeringNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.National Mobile Communication Research LaboratorySoutheast UniversityNanjingChina
  3. 3.Dept. of Electrical and Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations