Circuits, Systems, and Signal Processing

, Volume 31, Issue 3, pp 877–888 | Cite as

A Simple Schmitt Trigger Circuit with Grounded Passive Elements and Its Application to Square/Triangular Wave Generator

  • Shahram MinaeiEmail author
  • Erkan Yuce


This paper introduces a new simple Schmitt trigger circuit using a plus-type differential voltage-current conveyor (DVCC+) and only two grounded resistors. The proposed circuit is very simple and enjoys adjustable lower and higher threshold voltages as well as the output saturation levels. The application of the proposed Schmitt trigger circuit to the square/triangular wave generator is also given. Moreover, a current feedback operational amplifier (CFOA)-based square/triangular wave generator is derived from the proposed DVCC+-based circuit. Simulation and experimental results are presented to exhibit the performance of the proposed circuits.


Schmitt trigger Square wave generator Triangular wave generator DVCC+ CFOA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.T. Abuelma’atti, M.A. Al-Absi, A low-cost dual/slope triangular/square wave generator. Int. J. Electron. 91(3), 185–190 (2004) CrossRefGoogle Scholar
  2. 2.
    M.T. Abuelma’atti, M.A. Al-Absi, A current conveyor-based relaxation oscillator as a versatile electronic interface for capacitive and resistive sensors. Int. J. Electron. 92(8), 473–477 (2005) CrossRefGoogle Scholar
  3. 3.
    M.T. Abuelma’atti, S.M. Al-Shahrani, New CFOA-based triangular/square wave generator. Int. J. Electron. 84(6), 583–588 (1998) CrossRefGoogle Scholar
  4. 4.
    B. Almashary, H. Alhokail, Current-mode triangular wave generator using CCIIs. Microelectron. J. 31, 239–243 (2000) CrossRefGoogle Scholar
  5. 5.
    E. Bruun, Feedback analysis of transimpedance operational amplifier circuits. IEEE Trans. Circuits Syst., Part I 40(4), 275–277 (1993) CrossRefGoogle Scholar
  6. 6.
    H.-C. Chien, Y.-K. Lo, Design and implementation of monostable multivibrators employing differential voltage current conveyors. Microelectron. J. 42(10), 1107–1115 (2011) CrossRefGoogle Scholar
  7. 7.
    W.-S. Chung, H. Kim, H.-W. Cha, H.-J. Kim, Triangular/squarewave generator with independently controllable frequency and amplitude. IEEE Trans. Instrum. Meas. 54(1), 105–109 (2005) CrossRefGoogle Scholar
  8. 8.
    O. Cicekoglu, H. Kuntman, On the design of CCII+ based relaxation oscillator employing single passive element for linear period control. Microelectron. J. 29, 983–989 (1998) CrossRefGoogle Scholar
  9. 9.
    G. Di Cataldo, G. Palumbo, S. Pennisi, A Schmitt trigger by means of a CCII+. Int. J. Circuit Theory Appl. 23(2), 161–165 (1995) CrossRefGoogle Scholar
  10. 10.
    H.O. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications. IEE Proc., Circuits Devices Syst. 144(3), 195–200 (1997) CrossRefGoogle Scholar
  11. 11.
    S. Franco, Analytical foundation of current-feedback amplifiers, in Proc. IEEE ISCAS’93, San Francisco (1993), pp. 1050–1053 Google Scholar
  12. 12.
    A.A. Khan, S. Bimal, K.K. Dey, S.S. Roy, Novel RC sinusoidal oscillator using second-generation current conveyor. IEEE Trans. Instrum. Meas. 54(6), 2402–2406 (2005) CrossRefGoogle Scholar
  13. 13.
    V. Kumar, A.U. Keskin, K. Pal, DVCC-based single element controlled oscillators using all-grounded components and simultaneous current-voltage mode outputs. Frequenz 61(3), 141–144 (2007) CrossRefGoogle Scholar
  14. 14.
    Y. Liu, S. Chen, K. Nakayama, K. Watanabe, Limitations of a relaxation oscillator in capacitance measurements. IEEE Trans. Instrum. Meas. 49(5), 980–983 (2000) CrossRefGoogle Scholar
  15. 15.
    Y.-K. Lo, H.-C. Chien, Switch-Controllable OTRA-based square/Triangular waveform generator. IEEE Trans. Circuits Syst. II, Express Briefs 54(12), 1110–1114 (2007) CrossRefGoogle Scholar
  16. 16.
    Y.-K. Lo, H.-C. Chien, H.-J. Chiu, Current-input OTRA Schmitt trigger with dual hystersis modes. Int. J. Circuit Theory Appl. 38, 739–746 (2010) zbMATHCrossRefGoogle Scholar
  17. 17.
    Y.-K. Lo, H.-C. Chien, H.-J. Chiu, Switch-controllable OTRA-based bistable multivibrators. IET Circuits Devices Syst. 2(4), 373–382 (2008) CrossRefGoogle Scholar
  18. 18.
    S. Minaei, A new high performance CMOS third generation current conveyor (CCIII) and its application. Electr. Eng. J. 85(3), 147–153 (2003) CrossRefGoogle Scholar
  19. 19.
    S. Minaei, E. Yuce, All-grounded passive elements voltage-mode DVCC-based universal filters. Circuits Syst. Signal Process. 29(2), 295–309 (2010) zbMATHCrossRefGoogle Scholar
  20. 20.
    S. Minaei, E. Yuce, Novel voltage-mode all-pass filter based on using DVCCs. Circuits Syst. Signal Process. 29(3), 391–402 (2010) zbMATHCrossRefGoogle Scholar
  21. 21.
    S.N. Nihtianov, G.P. Shterev, B. Iliev, G.C.M. Meijer, An interface circuit for R-C impedance sensors with a relaxation oscillator. IEEE Trans. Instrum. Meas. 50(6), 1563–1567 (2001) CrossRefGoogle Scholar
  22. 22.
    OPA660. Wide Bandwidth Operational Transconductance amplifier and Buffer. Datasheet. Burr-Brown Google Scholar
  23. 23.
    D. Pal, A. Srinivasulu, B.B. Pal, A. Demosthenous, B.N. Das, Current conveyor-based square/triangular wave generators with improved linearity. IEEE Trans. Instrum. Meas. 58(7), 2174–2180 (2009) CrossRefGoogle Scholar
  24. 24.
    G. Palumbo, S. Pennisi, Current-feedback versus voltage operational amplifiers. IEEE Trans. Circuits Syst., Part I 48(5), 617–623 (2001) CrossRefGoogle Scholar
  25. 25.
    A.S. Sedra, K.C. Smith, Microelectronic Circuits, 5th edn. (Oxford Univ. Press, London, UK, 2004), pp. 1185–1188 Google Scholar
  26. 26.
    A.S. Sedra, G.W. Roberts, F. Gohn, The current conveyor: History, progress and new results. IEE. Proc. Part G, Circuits Devices Syst. 137, 78–87 (1990) CrossRefGoogle Scholar
  27. 27.
    P. Silapan, M. Siripruchyanun, Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr. Circuits Signal Process. 68, 111–128 (2011) CrossRefGoogle Scholar
  28. 28.
    D. Smith, M. Koen, A. Witulski, Evolution of high-speed operational amplifier architectures. IEEE J. Solid-State Circuits 29(10), 1166–1179 (1994) CrossRefGoogle Scholar
  29. 29.
    A. Srinivasulu, A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory Appl. 39(6), 679–686 (2011) CrossRefGoogle Scholar
  30. 30.
    C. Toumazou, F.J. Lidgey, D.G. Haigh, Analog IC Design: The Current-Mode Approach (Peter Peregrinus, London, 1990) Google Scholar
  31. 31.
    F. Yuan, Differential CMOS Schmitt trigger with tunable hysteresis. Analog Integr. Circuits Signal Process. 62, 245–248 (2010) CrossRefGoogle Scholar
  32. 32.
    E. Yuce, Grounded inductor simulators with improved low frequency performances. IEEE Trans. Instrum. Meas. 57(5), 1079–1084 (2008) CrossRefGoogle Scholar
  33. 33.
    E. Yuce, S. Minaei, O. Cicekoglu, Full-wave rectifier realization using only two CCII+s and NMOS transistors. Int. J. Electron. 93(8), 533–541 (2006) CrossRefGoogle Scholar
  34. 34.
    E. Yuce, S. Minaei, H. Alpaslan, Novel CMOS technology-based linear grounded voltage controlled resistor. J. Circuits Syst. Comput. 20(3), 447–455 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electronics and Communications EngineeringDogus UniversityKadikoy, IstanbulTurkey
  2. 2.Department of Electrical and Electronics EngineeringPamukkale UniversityKinikli-DenizliTurkey

Personalised recommendations