Circuits, Systems, and Signal Processing

, Volume 31, Issue 2, pp 627–649 | Cite as

Design and Comparison of FFT VLSI Architectures for SoC Telecom Applications with Different Flexibility, Speed and Complexity Trade-Offs

  • Sergio Saponara
  • Massimo Rovini
  • Luca Fanucci
  • Athanasios Karachalios
  • George Lentaris
  • Dionysios Reisis


The design of Fast Fourier Transform (FFT) integrated architectures for System-on-Chip (SoC) telecom applications is addressed in this paper. After reviewing the FFT processing requirements of wireless and wired Orthogonal Frequency Division Multiplexing (OFDM) standards, including the emerging Multiple Input Multiple Output (MIMO) and OFDM Access (OFDMA) schemes, three FFT architectures are proposed: a fully parallel, a pipelined cascade and an in-place variable-size architecture, which offer different trade-offs among flexibility, processing speed and complexity. Silicon implementation results and comparisons with the state-of-the-art prove that each macrocell outperforms the known works for a target application. The fully parallel is optimized for throughput requirements up to several GSamples/s enabling Ultra-wideband (UWB) communications by using all channels foreseen in the standard. The pipelined cascade macrocell minimizes complexity for large size FFTs sustaining throughput up to 100 MSamples/s. The in-place variable-size FFT macrocell stands for its flexibility by allowing run-time reconfigurability required in OFDMA schemes while attaining the required throughput to support MIMO communications. The three architectures are also compared with common case-studies and target technology.


VLSI design Fast Fourier Transform System-on-Chip OFDM telecom systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Amirshahi, M. Navidpour, M. Kavehrad, Performance analysis of uncoded and coded OFDM broadband transmission over low voltage power-line channels with impulsive noise. IEEE Trans. Power Deliv. 21(4), 1927–1934 (2006) CrossRefGoogle Scholar
  2. 2.
    J.G. Andrews, A. Ghosh, R. Muhamed, Fundamentals of WiMAX, Understanding Broadband Wireless Networking. Prentice Hall Communications Engineering and Emerging Technologies Series (Prentice Hall, New York, 2007) Google Scholar
  3. 3.
    F. Baronti et al., Design and verification of hardware building blocks for high-speed and fault-tolerant in-vehicle networks. IEEE Trans. Ind. Electron. 58(3), 792–801 (2011) CrossRefGoogle Scholar
  4. 4.
    G. Bi, E. Jones, A pipelined FFT processor for word-sequential data. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1982–1985 (1988) CrossRefGoogle Scholar
  5. 5.
    J. Bingham, Multicarrier modulation for data transmission: an idea whose time has come. IEEE Commun. Mag. 28(5) (1990) Google Scholar
  6. 6.
    R. Cabral, S. Escarigo, H. Neto, H. Sarmento, Implementation of a DAB receiver with FPGA technology, in Proc. IEEE ICCE, Jan 2006, pp. 397–398 Google Scholar
  7. 7.
    A. Chimenti et al., VLSI architecture for a low-power video codec system. Microelectron. J., 33(5–6), 417–427 (2002) CrossRefGoogle Scholar
  8. 8.
    J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. IEEE Trans. Electron. Comput. EC-15(4), 680–681 (1966) CrossRefGoogle Scholar
  9. 9.
    A.R. Cooper, Parallel architecture modified booth multiplier. IEE Proc. G, Electron. Circuits Syst. 135, 125–128 (1988) CrossRefGoogle Scholar
  10. 10.
    A. Cortes, I. Velez, J. Sevillano, A. Irizar, An FFT core for DVB-T/DVB-H receivers, in Proc. Third IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dec 2006, pp. 102–105 Google Scholar
  11. 11.
    M. Deinzer, M. Stoger, Integrated PLC-modem based on OFDM, in Int. Sym. On Power-line Communications and its Applications (ISPLC’99) (1999) Google Scholar
  12. 12.
    C. Del-Toso, M. Nava, A short overview of the VDSL system requirements. IEEE Commun. Mag., 40(12), 82–90 (2002) CrossRefGoogle Scholar
  13. 13.
    P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art. Signal Process. 19(4), 259–299 (1990) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    L. Fanucci et al., A parametric VLSI architecture for video motion estimation. Integration 31(1), 79–100 (2001) MATHGoogle Scholar
  15. 15.
    L. Fanucci et al., Parametrized and reusable VLSI macrocells for the low-power realization of 2-D discrete-cosine-transform. Microelectron. J. 32(12), 1035–1045 (2001) CrossRefGoogle Scholar
  16. 16.
    L. Fanucci et al., Power optimization of an 8051-compliant microcontroller. IEICE Trans. Electron. 88(4), 597–600 (2005) CrossRefGoogle Scholar
  17. 17.
    B. Farahani, M. Ismail, WiMAX/WLAN radio receiver architecture for convergence in WMANS, in IEEE 48th Midwest Symposium on Circuits and Systems, Aug 2005, pp. 1621–1624 CrossRefGoogle Scholar
  18. 18.
    High rate ultra wideband PHY and MAC standard, Dec 2005, standard ECMA-368 Google Scholar
  19. 19.
    H. Holma, A. Toskala, LTE for UMTS, OFDMA and SC-FDMA Based Radio Access (Wiley, New York, 2009) Google Scholar
  20. 20.
    IEEE 802.11-05/1102r4, IEEE P802.11 Wireless LANs Joint Proposal: High throughput extension to the 802.11 Standard: PHY, Jan 2006 Google Scholar
  21. 21.
    Y. Jung, J. Kim, S. Lee, H. Yoon, J. Kim, Design and implementation of MIMO-OFDM baseband processor for high-speed wireless LANs. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 54(7), 631–635 (2007) CrossRefGoogle Scholar
  22. 22.
    M. Kornfeld, DVB-H—the emerging standard for mobile data communication, in IEEE International Symposium on Consumer Electronics, Sept. 2004, pp. 193–198 CrossRefGoogle Scholar
  23. 23.
    J. Lee, J. Moon, K. Heo, M. Sunwoo, S. Oh, I. Kim, Implementation of application-specific DSP for OFDM systems, in Proc. IEEE International Conference on Circuits and Systems (ISCAS), May 2004, vol. 3, pp. 665–668 Google Scholar
  24. 24.
    X. Li, Z. Lai, J. Cui, A low power and small area FFT processor for OFDM. IEEE Trans. Consum. Electron., 53(2), 274–277 (2007) MATHCrossRefGoogle Scholar
  25. 25.
    Y.-W. Lin, C.-Y. Lee, Design of an FFT/IFFT processor for MIMO OFDM systems. IEEE Trans. Circuits Syst. I, 54(4), 807–815 (2007) MathSciNetCrossRefGoogle Scholar
  26. 26.
    N. L’insalata et al., Automatic synthesis of cost effective FFT/IFFT cores for VLSI OFDM systems. IEICE Trans. Electron., E91-C(4), 487–496 (2008) CrossRefGoogle Scholar
  27. 27.
    K. Nakos, D. Reisis, N. Vlassopoulos, Addressing technique for parallel memory accessing in Radix-2 FFT Processors, in IEEE Int. Conference on Electronics, Circuits and Systems (ICECS), Sep 2008, pp. 52–56 Google Scholar
  28. 28.
    S. Oraintara, Y.J. Chen, T.Q. Nguyen, Integer Fast Fourier Transform. IEEE Trans. Signal Process. 50(3), 607–618 (2002) MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Perels, D. Haene, P. Luethi, A. Burg, N. Felber, W. Fichtner, H. Bolcskei, ASIC implementation of a MIMO OFDM transceiver for 192 Mbps WLAN, in Proc. IEEE ESSCIRC2005 (2005) Google Scholar
  30. 30.
    K. Prakash, M.M. Rao, Fixed-point error analysis of radix-4 fht algorithm with optimised scaling schemes. IEE Proc., Vis. Image Signal Process. 142, 65–70 (1995) CrossRefGoogle Scholar
  31. 31.
    S. Saponara, L. Fanucci, VLSI design investigation for low-cost, low-power FFT/IFFT processing in advanced VDSL transceivers. Microelectron. J. 34(2), 133–148 (2003) CrossRefGoogle Scholar
  32. 32.
    S. Saponara, K. Denolf, G. Lafruit, C. Blanch, J. Bormans, Performance and complexity co-evaluation of the advanced video coding standard for cost-effective multimedia communications. EURASIP J. Appl. Signal Process. 2004(2), 220–235 (2004) CrossRefGoogle Scholar
  33. 33.
    S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real-Time Image Process. 1(4), 267–283 (2007) CrossRefGoogle Scholar
  34. 34.
    S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, D. Kammler, E. Witte, Application-specific instruction-set processor for retinex-like image and video processing. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 54(7), 596–600 (2007) CrossRefGoogle Scholar
  35. 35.
    S. Saponara, L. Fanucci, P. Terreni, Architectural-level power optimization of microcontroller cores in embedded systems. IEEE Trans. Ind. Electron. 54(1), 680–683 (2007) CrossRefGoogle Scholar
  36. 36.
    S. Saponara, P. Nuzzo, C. Nani, G. Van der Plas, L. Fanucci, Architectural exploration and design of time-interleaved SAR arrays for low-power and high speed A/D converters. IEICE Trans. Electron. 92-C(6), 843–851 (2009) CrossRefGoogle Scholar
  37. 37.
    R.S. Sherrat, O. Cadenas, N. Goswami, A low clock frequency FFT core implementation for multiband full-rate ultra-wideband (UWB) receivers. IEEE Trans. Consum. Electron. 51(3), 798–802 (2005) CrossRefGoogle Scholar
  38. 38.
    D. Skellern, A high-speed wireless LAN. IEEE MICRO 17(1), 40–47 (1997) CrossRefGoogle Scholar
  39. 39.
    C.D. Thompson, Fourier transform in VLSI. IEEE Trans. Comput. C-32(11), 1047–1057 (1983) CrossRefGoogle Scholar
  40. 40.
    F. Vitullo et al., Low-complexity link microarchitecture for mesochronous communication in Networks-on-Chip. IEEE Trans. Comput. 57(9), 1196–1201 (2008) MathSciNetCrossRefGoogle Scholar
  41. 41.
    J. Walko, Click here for VDSL2. Commun. Eng. 3(4), 9–12 (2005) CrossRefGoogle Scholar
  42. 42.
    C.-C. Wang, J.-M. Huang, H.-C. Cheng, A 2K/8K mode small-area FFT processor for OFDM demodulation of DVB-T receivers. IEEE Trans. Consum. Electron. 51(1), 28–32 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sergio Saponara
    • 1
  • Massimo Rovini
    • 1
  • Luca Fanucci
    • 1
  • Athanasios Karachalios
    • 2
  • George Lentaris
    • 2
  • Dionysios Reisis
    • 2
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly
  2. 2.Department of PhysicsUniversity of AthensAthensGreece

Personalised recommendations