Circuits, Systems, and Signal Processing

, Volume 31, Issue 1, pp 93–106 | Cite as

Time-Varying Delay Passivity Analysis in 4 GHz Antennas Array Design

  • S. Cauet
  • F. Hutu
  • P. Coirault


In this paper, a new approach for synchronization of dynamical networks with time-delays is proposed. It is based on stability theory of coupled time-delayed dynamical systems. Some new criteria for stability analysis which ensure the synchronization of the networks are analytically derived. Conditions for synchronization, in the form of Linear Matrix Inequality, are established. They use the Lyapunov and Krasovskii stability theories. In this approach, parameter uncertainties are introduced in the network model. Numerical simulations show the efficiency of the proposed synchronization analysis. A network of 4-GHz smart antenna array is used and analyzed in some details. This array provides a control of the direction of the radiation pattern.


Passivity Network Time-delay system LMI Robust control Milliwave electronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Belykh, M. Hasler, Synchronization and graph topology. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(11), 3423–3433 (2005) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    S. Chandran, Adaptive Antenna Arrays: Trends and Applications (Springer, Berlin, 2004) Google Scholar
  3. 3.
    M.G. Earl, S.H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion. Phys. Rev. E 67(3), 036204 (2003) CrossRefGoogle Scholar
  4. 4.
    E. Fridman, U. Shaked, Parameter dependant stability and stabilization of uncertain time delay systems. IEEE Trans. Autom. Control 48, 861–866 (2003) MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Hutu, S. Cauet, P. Coirault, Antenna arrays principle and solutions: Robust control approach. Int. J. Comput. Commun. Control III(2), 161–171 (2008) Google Scholar
  6. 6.
    J.D. Kraus, R.J. Marhefka, Antennas for All Applications (McGraw-Hill, New York, 2002) Google Scholar
  7. 7.
    C. Li, X. Liao, Passivity analysis of neural networks with time delay. IEEE Trans. Circuits Syst. 52(8), 471–475 (2005) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Z. Li, G. Chen, Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst. 53(1), 28–33 (2006) CrossRefGoogle Scholar
  9. 9.
    Z. Li, L. Jiao, J.-J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength. Physica A 387, 1369–1380 (2008) CrossRefGoogle Scholar
  10. 10.
    X. Liao, G. Chen, E.N. Sanchez, Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Netw. 15(7), 855–866 (2002) MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Liu, G.M. Dimirovski, J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology. Physica A 387, 643–652 (2008) CrossRefGoogle Scholar
  12. 12.
    J. Lu, G. Chen, A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005) MathSciNetCrossRefGoogle Scholar
  13. 13.
    M.S. Mahmoud, A. Ismail, Passivity and passification of time-delay systems. J. Math. Anal. Appl. 292, 247–258 (2004) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Y.S. Moon, P. Park, W.H. Kwon, Robust stabilization of uncertain input-delayed systems using reduction method. Automatica 37, 307–312 (2001) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    S.-I. Niculescu, R. Lozano, On the passivity of linear delay systems. IEEE Trans. Autom. Control 46(3), 460–464 (2001) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    S.J. Orfanidis, Electromagnetic waves and antennas., 2004
  17. 17.
    A. Papachristodoulou, A. Jadbabaie, Synchronization in oscillator networks with heterogeneous delays, switching topologies and nonlinear dynamics. In IEEE Conference on Decision and Control (2006) pp. 4307–4312 Google Scholar
  18. 18.
    A. Pogromosky, H. Nijmeijer, Cooperative oscillatory behavior of mutually coupled dynamical systems. IEEE Trans. Circuits Syst. 48(2), 152–162 (2001) CrossRefGoogle Scholar
  19. 19.
    C. Posadas-Castillo, C. Cruz-Hernandez, R.M. Lopez-Gutierrez, Experimental realization of synchronization in complex networks with Chua’s circuits like nodes. Chaos Solitons Fractals 40(4), 1963–1975 (2007) CrossRefGoogle Scholar
  20. 20.
    M.S. Saadni, M. Chaabane, D. Mehdi, Stability and stabilizability of a class of uncertain dynamical systems with delay. Int. J. Appl. Math. Comput. Sci. 15(3), 321 (2005) MathSciNetMATHGoogle Scholar
  21. 21.
    V. Singh, A generalized LMI-based approach to the global asymptotic stability of delayed cellular neural networks. IEEE Trans. Neural Netw. 15(1), 223–225 (2004) CrossRefGoogle Scholar
  22. 22.
    R.E. Skelton, T. Iwasaki, K.M. Grigoriadis, A Unified Algebraic Approach to Linear Control Design (Taylor & Francis, New York, 1997) Google Scholar
  23. 23.
    G.-B. Stan, Global analysis and synthesis of oscillations: a dissipativity approach. PhD thesis, Universite de Liege, Faculte des Sciences Appliquees, 2005 Google Scholar
  24. 24.
    G.-B. Stan, R. Sepulchre, Dissipativity and global analysis of limit cycles in networks of oscillators. In 6th Conference of Mathematical Theory of Networks and Systems (2004) Google Scholar
  25. 25.
    G.-B. Stan, R. Sepulchre, Global analysis of limit cycles in networks of oscillators. In Proceedings of the Sixth IFAC Symposium on Nonlinear Control Systems (2004) Google Scholar
  26. 26.
    S. Tarbouriech, G. Garcia, J.M. Gomes da Silva, Robust stability of uncertain polytopic linear time delays systems with saturation inputs: an LMI approach. Comput. Electr. Eng. 28, 157–169 (2002) MATHCrossRefGoogle Scholar
  27. 27.
    J. Willems, Dissipative dynamical systems Arch. Ration. Mech. Anal. 45, 321–393 (1972) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    C.W. Wu, Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. IEEE Trans. Circuits Syst. II 52(5), 282–286 (2005) CrossRefGoogle Scholar
  29. 29.
    Y. Xia, Y. Jia, Robust control of state delayed systems with polytopic type uncertainties via parameter-dependant Lyapunov functionals. Syst. Control Lett. 50, 183–193 (2003) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    W. Yu, Passivity analysis for dynamic multilayer neuro identifier. IEEE Trans. Circuits Syst. 50(1), 173–178 (2003) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.ESIP-LAIIPoitiers UniversityPoitiers CedexFrance
  2. 2.INRIA INSA-Lyon, CITILyon UniversityVilleurbanneFrance

Personalised recommendations