Circuits, Systems, and Signal Processing

, Volume 31, Issue 1, pp 3–17 | Cite as

On the Realization of Multiphase Oscillators Using Fractional-Order Allpass Filters

Article

Abstract

In this paper multiphase oscillators built using fractional-order allpass filters are presented. We examine the theory behind their operation and demonstrate their usefulness in the design of both multiphase and quadrature oscillators. Case design examples are given for various scenarios, while PSPICE and experimental results verify their operation

Keywords

Allpass filters Fractional calculus Circuit theory Oscillators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Ahmad, R. El-khazali, A.S. Elwakil, Fractional-order Wien-bridge oscillator. Electron. Lett. 37(18), 1110–1112 (2001) CrossRefGoogle Scholar
  2. 2.
    P. Butzer, U. Westphal, An Introduction to Fractional Calculus (Singapore, World Scientific, 2000) Google Scholar
  3. 3.
    G.E. Carlson, C.A. Halijak, Approximation of fractional capacitors (1/s)1/n by regular newton process. IEEE Trans. Circuit Theory CT-11(2), 210–213 (1964) Google Scholar
  4. 4.
    S.L.J. Gierkink, S. Levantino, R.C. Frye, C. Samori, V. Boccuzzi, A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling. IEEE J. Solid-State Circuits 38(7), 1148–1154 (2003) CrossRefGoogle Scholar
  5. 5.
    S.J.G. Gift, Application of all-pass filters in the design of multiphase sinusoidal systems. Microelectron. J. 31(1), 9–13 (2000) CrossRefGoogle Scholar
  6. 6.
    S.J.G. Gift, Multiphase sinusoidal oscillator using inverting-mode operational amplifiers. IEEE Trans. Instrum. Meas. 47(4), 986–991 (1998) CrossRefGoogle Scholar
  7. 7.
    C.T. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33(2), 364–373 (2007) CrossRefGoogle Scholar
  8. 8.
    T.C. Haba, G.L. Loum, J.T. Zoueu, G. Ablart, Use of a component with fractional impedance in the realization of an analogical regulator of order 1/2. J. Appl. Sci. (Pakistan) 8(1), 59–67 (2008) CrossRefGoogle Scholar
  9. 9.
    B.T. Krishna, K.V.V.S. Reddy, Active and passive realization of Fractance device of order 1/2. Act. Passive Electron. Compon. (2008) Google Scholar
  10. 10.
    M. Kumngern, J. Chanwutitum, K. Dejhan, Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integr. Circuits Signal Process. 65(2), 327–334 (2010) CrossRefGoogle Scholar
  11. 11.
    M.N. Kuperman, D.H. Zanette, Synchronization of multi-phase oscillators: An Axelrod-inspired model. Eur. Phys. J. B 70(2), 243–248 (2009) CrossRefGoogle Scholar
  12. 12.
    H. Lee, O. Kim, G. Ahn, D. Jeong, A Low jitter 5000 ppm spread spectrum clock generator for multi-channel SATA transceiver in 0.18 µm CMOS, in IEEE ISSCC Dig. Tech. Papers (2005), pp. 162–163 Google Scholar
  13. 13.
    G. Li, E. Afshari, A low-phase-noise multi-phase oscillator based on left-handed LC-ring. IEEE J. Solid-State Circuits 45(9), 1822–1833 (2010) CrossRefGoogle Scholar
  14. 14.
    B. Maundy, A. Elwakil, S. Gift, On a multivibrator that employs a fractional capacitor. Analog Integr. Circuits Signal Process. 62(1), 99–103 (2010) CrossRefGoogle Scholar
  15. 15.
    S. Ozoguz, T.M. Abdelrahman, E.S. Elwakil, Novel approximate square-root domain all-pass filter with application to multiphase oscillators. Analog Integr. Circuits Signal Process. (Netherlands) 46(3), 297–301 (2006) CrossRefGoogle Scholar
  16. 16.
    N. Prommee, P. Sra-ium, K. Dejhan, High-frequency log-domain current-mode multiphase sinusoidal oscillator. IEE Circuits Devices Syst. 4, 440–448 (2010) CrossRefGoogle Scholar
  17. 17.
    A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples. Int. J. Circuit Theory Appl. 36(4), 473–492 (2008) MATHCrossRefGoogle Scholar
  18. 18.
    A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17(1), 55–66 (2008) CrossRefGoogle Scholar
  19. 19.
    A. Gomaa Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: Design procedure and practical examples. IEEE Trans. Circuits Syst. I, Regul. Pap. 55(7), 2051–2063 (2008) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Behzad Razavi, Rf transmitter architectures and circuits, in Proceedings of the Custom Integrated Circuits Conference (1999), pp. 197–204 Google Scholar
  21. 21.
    G. Souliotis, C. Psychalinos, Electronically controlled multiphase sinusoidal oscillators using current amplifiers. Int. J. Circuit Theory Appl. 37(1), 43–52 (2009) CrossRefGoogle Scholar
  22. 22.
    M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: An approach to the optimized circuits. Commun. Comput. Sci. E82-A(8), 1627–1635 (1999) Google Scholar
  23. 23.
    M.S. Tavazoei, M. Haeri, Rational approximations in the simulation and implementation of fractional-order dynamics: A descriptor system approach. Automatica 46(1), 94–100 (2010) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    J.V. Vosper, Synthesis of first-order active-R allpass networks and their application in sinusoidal oscillator design. Electron. Lett. 27(1), 53–55 (1991) CrossRefGoogle Scholar
  25. 25.
    D.-S. Wu, S.-I. Liu, Y.-S. Hwang, Y.-P. Wu, Multiphase sinusoidal oscillator using the CFOA pole. IEE Proc., Circuits Devices Syst. 142(1), 37–40 (1995) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Electrical & Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Department of Electrical and Computer EngineeringUniversity of the West IndiesSt. AugustineTrinidad

Personalised recommendations