Circuits, Systems, and Signal Processing

, Volume 30, Issue 2, pp 421–438 | Cite as

A Control-Theoretic Approach for Efficient Design of Filters in DAC and Digital Audio Amplifiers

  • Konstantinos Tsakalis
  • Nikolaos Vlassopoulos
  • George Lentaris
  • Dionysios Reisis


A control-theoretic approach in designing Digital-to-Analogue Converters and Digital Amplifiers which leads to improved performance in Audio and Multimedia applications is presented in this paper. The design involves an over-sampling and a pulse modulation component which is driven by a pulse generation algorithm based on the characteristics of the output filter. The theoretical model results in a family of digital circuits whose operation is verified by computer simulations achieving a performance of Signal-to-Noise Ratio of 147 dB at a switching rate of 90 MHz. Implementation and hardware complexity issues are discussed based on a FPGA realization of the algorithm.


Pulse width modulation Delta modulation Digital-to-analog converters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    V.M.E. Antunes, V.F. Pires, J.F.A. Silva, Narrow pulse elimination PWM for multilevel digital audio power amplifiers using two cascaded H-bridges as a nine-level converter. IEEE Trans. Power Electron. 22(2), 425–434 (2007) CrossRefGoogle Scholar
  3. 3.
    J.B. Burl, Linear Optimal Control. H 2 and H Methods (Addison-Wesley Longman Inc., Menlo Park, 1999) Google Scholar
  4. 4.
    J.L. Dawson, T.H. Lee, Feedback Linearization of RF Power Amplifiers (Kluwer Academic, Boston, 2004) Google Scholar
  5. 5.
    A. Floros, J. Mourjopoulos, Analytic derivation of audio PWM signals and spectra. J. Audio Eng. Soc. 46(7/8), 621–633 (1998) Google Scholar
  6. 6.
    A. Floros, J. Mourjopoulos, Distortion-free 1-bit PWM coding for digital audio signals. EURASIP J. Appl. Signal Process. 2007(1) (2007) Google Scholar
  7. 7.
    A.E. Ginart, R.M. Bass, W.M. Leach, T.G. Habetler, Analysis of the class AD audio amplifier including hysteresis effects. IEEE Trans. Power Electron. 18(2), 679–685 (2003) CrossRefGoogle Scholar
  8. 8.
    J. Goldberg, M.B. Sandler, New results in PWM for digital power amplification. Audio Engineering Soc., Convention, August 1990. Preprint 2959 Google Scholar
  9. 9.
    B.H. Gwee, J.S. Chang, H. Li, A micropower low-distortion digital pulsewidth modulator for a digital class D amplifier. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 49(4), 245–256 (2002) CrossRefGoogle Scholar
  10. 10.
    M.J. Hawksford, W. Wingerter, Oversampling filter design in noise-shaping digital-to-analog conversion. J. Audio Eng. Soc. 38(11), 845–856 (1990) Google Scholar
  11. 11.
    R.E. Hiorns, R.G. Bowman, J.M. Goldberg, M.B. Sandler, Developments in realizing an all digital power amplifier. Audio Engineering Soc., Convention, Paris, February 1991. Preprint 3034 Google Scholar
  12. 12.
    J.W. Jung, M.J. Hawksford, An oversampled digital PWM linearization technique for digital-to-analog conversion. IEEE Trans. Circuits Syst. I: Regular Papers 51(9), 1781–1789 (2004) CrossRefGoogle Scholar
  13. 13.
    T. Kailath, Linear Systems (Englewood Cliffs, Prentice Hall, 1980) MATHGoogle Scholar
  14. 14.
    P. Midya, B. Roeckner, S. Bergstedt, Digital correction of PWM switching amplifiers. IEEE Power Electron. Lett. 2(2), 68–72 (2004) CrossRefGoogle Scholar
  15. 15.
    K. Nielsen, A review and comparison of pulse-width-modulation (PWM) methods for analog and digital input switching power amplifiers. Audio Eng. Soc., Convention, February 1997. Preprint 4446 Google Scholar
  16. 16.
    C. Pascual, Z. Song, P.T. Krein, D.V. Sarwate, P. Midya, W.J. Roeckner, High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP implementation, and results. IEEE Trans. Power Electron. 18(1), 473–485 (2003) CrossRefGoogle Scholar
  17. 17.
    M.S. Pedersen, M. Shajaan, All digital power amplifier based on pulse width modulation. Audio Engineering Soc., Convention, Amsterdam, February 1994. Preprint 3809 Google Scholar
  18. 18.
    P. Pribyl, The non-linear distortion in class D amplifiers. Audio Engineering Soc., Convention, February 1991. Preprint 3035 Google Scholar
  19. 19.
    P. Pribyl, Spectral representation of a PCM-PWM digital power amplifier. 88th Convention of the Audio Engineering Soc., March 1990. Preprint 2920 Google Scholar
  20. 20.
    K.M. Smith, Z. Lai, K.M. Smedley, A new PWM controller with one-cycle response. IEEE Trans. Power Electron. 14(1), 142–150 (1999) CrossRefGoogle Scholar
  21. 21.
    R.A. Wannamaker, S.P. Lipshitz, Time-domain behavior of dithered quantizers. Audio Engineering Soc., 93rd Convention, October 1992. Preprint 3418 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Konstantinos Tsakalis
    • 1
  • Nikolaos Vlassopoulos
    • 2
  • George Lentaris
    • 3
  • Dionysios Reisis
    • 3
  1. 1.Electrical EngineeringArizona State UniversityTempeUSA
  2. 2.LORIA MAIA TeamINRIA Nancy-Grand EstFrance
  3. 3.Electronics Laboratory, Physics DepartmentNational and Kapodistrian University of AthensPanepistimiopolis, AthensGreece

Personalised recommendations