Circuits, Systems, and Signal Processing

, Volume 30, Issue 1, pp 1–16 | Cite as

Sliding Mode Observer-Based Fault Estimation for Nonlinear Networked Control Systems

  • Bin Jiang
  • Peng Shi
  • Zehui Mao


In this paper, a novel sliding mode observer-based fault estimation (FE) method is presented for a class of nonlinear networked control systems (NCSs) with Markov transfer delays. Firstly, the nonlinear NCS is described by a nonlinear discrete Takagi–Sugeno (T–S) fuzzy model using the Euler approximation method. Then, a sliding mode based nonlinear discrete observer is proposed such that the sliding motion of the error dynamical system is asymptotically stable on a designed surface. Then the FE can be achieved through this observer. Finally, an example is included to show the efficiency of the proposed method.


Fault estimation Nonlinear networked control systems Sliding mode observer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and Fault-Tolerant Control (Springer, Berlin, 2003) zbMATHGoogle Scholar
  2. 2.
    J.N. Chiasson, M. Bodson, Nonlinear control of a shunt DC motor. IEEE Trans. Autom. Control 38, 1662–1666 (1993) CrossRefMathSciNetGoogle Scholar
  3. 3.
    V. Cocquempot, T. Mezyani, M. Staroswiecki, Fault detection and isolation for hybrid systems using structured parity residuals, in Proc. of 5th Asian Control Conference (2004), pp. 1204–1212 Google Scholar
  4. 4.
    C. de Wit Canudas, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995) CrossRefGoogle Scholar
  5. 5.
    X. Fan, M. Arcak, Observer design for systems with multivariable monotone nonlinearities. Syst. Control Lett. 50(4), 319–330 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H.J. Fang, H. Ye, M.Y. Zhong, Fault diagnosis of networked control systems. Ann. Rev. Control 31(1), 55–68 (2007) CrossRefGoogle Scholar
  7. 7.
    H.J. Gao, T.W. Chen, New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Autom. Control 52(2), 328–334 (2007) CrossRefMathSciNetGoogle Scholar
  8. 8.
    H.J. Gao, T.W. Chen, A new delay system approach to network-based control. Automatica 44, 534–542 (2008) CrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Jiang, F. Chowdhury, Observer-based fault diagnosis for a class of nonlinear systems, in Proc. of American Control Conference, Boston, Massachusetts (2004), pp. 5671–5675 Google Scholar
  10. 10.
    B. Jiang, F.N. Chowdhuery, Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans. Control Syst. Technol. 13(3), 493–499 (2005) CrossRefGoogle Scholar
  11. 11.
    B. Jiang, J.L. Wang, Y.C. Soh, An adaptive technique for robust diagnosis of faults with independent effects on system output. Int. J. Control 75(11), 792–802 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Leonardo, P. Francesc, Sliding mode control of hysteretic structural systems. Int. J. Innov. Comput. Inf. Control 5(4), 1081–1088 (2009) Google Scholar
  13. 13.
    Z.H. Mao, B. Jiang, Fault identification and fault-tolerant control for a class of networked control systems. Int. J. Innov. Comput. Inf. Control 3(5), 1121–1130 (2007) MathSciNetGoogle Scholar
  14. 14.
    Z.H. Mao, B. Jiang, P. Shi, H fault detection filter design for networked control systems modelled by discrete Markovian jump systems. IET Control Theory Appl. 1(5), 1336–1343 (2007) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Z.H. Mao, B. Jiang, V. Cocquempot, P. Shi, Observer-based fault estimation for networked control systems with transfer delays, in Proc. of 17th IFAC World Congress, Seoul, Korea (2008), pp. 1902–1907 Google Scholar
  16. 16.
    P. Mendez-Monroy, H. Benitez-Perez, Supervisory fuzzy control for networked control systems. ICIC Express Lett. 3(2), 233–238 (2009) Google Scholar
  17. 17.
    D. Nešić, A.R. Teel, Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model. Automatica 42(10), 1801–1808 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Nešić, A.R. Teel, P.V. Kokotović, Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Syst. Control Lett. 38(4), 259–270 (1999) zbMATHCrossRefGoogle Scholar
  19. 19.
    P. Shi, E.K. Boukas, S.K. Nguang, X. Guo, Robust disturbance attenuation for discrete-time active fault tolerant control systems with uncertainties. Opt. Control Appl. Methods 24(2), 85–101 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    P. Shi, Y. Xia, G.P. Liu, D. Rees, On designing of sliding-mode control for Stochastic jump systems. IEEE Trans. Autom. Control 51(1), 97–103 (2006) CrossRefMathSciNetGoogle Scholar
  21. 21.
    M. Spong, Modeling and control of elastic joint robots. ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987) zbMATHCrossRefGoogle Scholar
  22. 22.
    M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37, 687–699 (2001) zbMATHMathSciNetGoogle Scholar
  23. 23.
    V.I. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 1992) zbMATHGoogle Scholar
  24. 24.
    Y. Wang, Z. Sun, H control of networked control system via LMI approach. Int. J. Innov. Comput. Inf. Control 3(2), 343–352 (2007) Google Scholar
  25. 25.
    X.G. Yan, C. Edwards, Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43, 1605–1614 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Zhang, Z. Yu, H. Huan, Y. Zhou, The sliding mode variable structure control based on composite reaching law of active magnetic bearing. ICIC Express Lett. 2(1), 59–63 (2008) Google Scholar
  27. 27.
    P. Zhang, S.X. Ding, Fault detection of networked control systems with limited communication, in Proc. of the 6th IFAC Safeprocess, Beijing (2006), pp. 1135–1140 Google Scholar
  28. 28.
    W. Zhang, M.S. Branicky, S.M. Philips, Stability of networked control systems. IEEE Control Syst. Magazine 21(1), 84–99 (2001) CrossRefGoogle Scholar
  29. 29.
    W.A. Zhang, L. Yu, Output feedback stabilization of networked control systems with packet dropouts. IEEE Trans. Autom. Control 52(9), 1705–1710 (2007) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Y. Zheng, H.J. Fang, H.O. Wang, Takagi–Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays. IEEE Trans. Syst. Man Cybern.—Part B: Cybernetics 36(4), 924–929 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Automation EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Computing and Mathematical SciencesUniversity of GlamorganPontypriddUK
  3. 3.School of Engineering and ScienceVictoria UniversityMelbourneAustralia

Personalised recommendations