Circuits, Systems and Signal Processing

, Volume 29, Issue 2, pp 295–309

All-Grounded Passive Elements Voltage-Mode DVCC-Based Universal Filters

Article

Abstract

In this paper two new voltage-mode (VM) universal filters employing three plus-type differential voltage current conveyors (DVCC+s) and grounded passive elements are presented. The first proposed filter is a single-input five-output (SIFO) circuit which can realize simultaneously all of the standard responses, i.e. low-pass (LP), band-pass (BP), high-pass (HP), all-pass (AP) and notch (NH) from the same configuration. The second proposed circuit is a three-input single-output (TISO) universal filter for realizing standard responses depending on the selection of the input signal from the same topology. Both of the proposed filters have the advantage of a high input impedance, which enables easy cascading to obtain higher order filters. The proposed filters are simulated using the SPICE program to verify the theoretical analysis.

DVCC Voltage-mode filter High input impedance Universal filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Altuntas, A. Toker, Realization of voltage and current mode KHN biquads using CCCIIs. Int. J. Electron. Commun. 56, 45–49 (2002) CrossRefGoogle Scholar
  2. 2.
    C.M. Chang, Multifunction biquadratic filters using current conveyors. IEEE Trans. Circuits Syst. II, Analog Dig. Signal Process. 44(11), 956–958 (1997) CrossRefGoogle Scholar
  3. 3.
    C.M. Chang, H.P. Chen, Universal capacitor-grounded voltage-mode filter with three inputs and a single output. Int. J. Electron. 90, 401–406 (2003) CrossRefGoogle Scholar
  4. 4.
    H.P. Chen, Universal voltage-mode filter using only plus-type DDCCs. Analog Integr. Circuits Signal Process. 50, 137–139 (2007) CrossRefGoogle Scholar
  5. 5.
    H.P. Chen, S.S. Shen, A versatile universal capacitor-grounded voltage-mode filter using DVCCs. Etri J. 29, 470–476 (2007) CrossRefGoogle Scholar
  6. 6.
    H.P. Chen, K.H. Wu, Voltage-mode DDCC-based multifunction filters. J. Circuits, Syst. Comput. 16, 93–104 (2007) CrossRefGoogle Scholar
  7. 7.
    W.Y. Chiu, J.W. Horng, High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Trans. Circuits Syst. II, Express Briefs 54, 649–652 (2007) CrossRefGoogle Scholar
  8. 8.
    W. Chiu, S.I. Liu, H.W. Tsao, J.J. Chen, CMOS differential difference current conveyors and their applications. IEE Proc. Circuits Dev. Syst. 143, 91–96 (1996) MATHCrossRefGoogle Scholar
  9. 9.
    H.O. Elwan, A.M. Soliman, Novel CMOS differential voltage current conveyor and its applications. IEE Proc. Circuits Dev. Syst. 144, 195–200 (1997) CrossRefGoogle Scholar
  10. 10.
    M. Higashimura, Y. Fukui, Universal filter using plus-type CCIIs. Electron. Lett. 32, 810–811 (1996) CrossRefGoogle Scholar
  11. 11.
    J.W. Horng, W.Y. Chiu, H.Y. Wei, Voltage-mode highpass, bandpass and lowpass filters using two DDCCs. Int. J. Electron. 91, 461–464 (2004) CrossRefGoogle Scholar
  12. 12.
    J.W. Horng, C.H. Hou, C.M. Chang, H.P. Chou, C.T. Lin, High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits Syst. Signal Process. 25, 767–777 (2006) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J.W. Horng, J.R. Lay, C.W. Chang, M.H. Lee, High input impedance voltage-mode multifunction filters using plus-type CCIIs. Electron. Lett. 33, 472–473 (1997) CrossRefGoogle Scholar
  14. 14.
    S. Minaei, M.A. Ibrahim, A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 37(7), 793–810 (2009) CrossRefGoogle Scholar
  15. 15.
    R. Senani, S.S. Gupta, Universal voltage-mode/current-mode biquad filter realised with current feedback op-amps. Frequenz 51(78), 203–208 (1997) Google Scholar
  16. 16.
    R. Senani, V.K. Singh, KHN-equivalent biquad using current conveyors. Electron. Lett. 31, 626–628 (1995) CrossRefGoogle Scholar
  17. 17.
    A.M. Soliman, Kerwin–Huelsman–Newcomb circuit using current conveyors. Electron. Lett. 30, 2019–2020 (1994) CrossRefGoogle Scholar
  18. 18.
    Y. Sun, Design of High Frequency Integrated Analogue Filters. The Institute of Electrical Engineering, London (2002) Google Scholar
  19. 19.
    Z. Wang, 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electron. Lett. 26, 951–952 (1990) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electronics and Communications EngineeringDogus UniversityIstanbulTurkey
  2. 2.Department of Electrical and Electronics EngineeringPamukkale UniversityKinikli-DenizliTurkey

Personalised recommendations