Circuits, Systems and Signal Processing

, Volume 29, Issue 1, pp 103–133 | Cite as

Two Classes of Cosine-Modulated IIR/IIR and IIR/FIR NPR Filter Banks

  • Linnéa Rosenbaum
  • Per Löwenborg
  • Håkan Johansson
Low Power Digital Filters

Abstract

This paper introduces two classes of cosine-modulated causal and stable filter banks (FBs) with near perfect reconstruction (NPR) and low implementation complexity. Both classes have the same infinite-length impulse response (IIR) analysis FB but different synthesis FBs utilizing IIR and finite-length impulse response (FIR) filters, respectively. The two classes are preferable for different types of specifications. The IIR/FIR FBs are preferred if small phase errors relative to the magnitude error are desired, and vice versa. The paper provides systematic design procedures so that PR can be approximated as closely as desired. It is demonstrated through several examples that the proposed FB classes, depending on the specification, can have a lower implementation complexity compared to existing FIR and IIR cosine-modulated FBs (CMFBs). The price to pay for the reduced complexity is generally an increased delay. Furthermore, two additional attractive features of the proposed FBs are that they are asymmetric in the sense that one of the analysis and synthesis banks has a lower computational complexity compared to the other, which can be beneficial in some applications, and that the number of distinct coefficients is small, which facilitates the design of FBs with large numbers of channels.

Keywords

Cosine modulation Infinite-length impulse response Finite-length impulse response Filter banks Low complexity Near perfect reconstruction Asymmetric Cosine-modulated 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Arbesser-Rastburg, R. Bellini, F. Coromina, R. De Gaudenzi, O. del Rio, M. Hollreiser, R. Rinaldo, P. Rinous, A. Roederer, R&D directions for next generation broadband multimedia systems: An ESA perspective, in Proc. Int. Comm. Satellite Syst. Conf., Montreal, May 2002 Google Scholar
  2. 2.
    F. Argenti, E.D. Re, Design of biorthogonal M-channel cosine-modulated FIR/IIR filter banks. IEEE Trans. Signal Process. 48(3), 876–881 (2000) CrossRefGoogle Scholar
  3. 3.
    R. Bregovic, T. Saramäki, An efficient approach for designing nearly perfect-reconstruction low-delay cosine-modulated filter banks, in Proc. IEEE Int. Symp. Circuits Syst., vol. 1, May 2002, pp. 825–828 Google Scholar
  4. 4.
    R. Bregovic, T. Saramäki, A systematic technique for designing linear-phase FIR prototype filters for perfect-reconstruction cosine-modulated and modified DFT filter banks. IEEE Trans. Signal Process. 53, 3193–3201 (2005) CrossRefMathSciNetGoogle Scholar
  5. 5.
    R.E. Crochiere, L.R. Rabiner, Multirate Digital Signal Processing (Prentice-Hall, Englewood Cliffs, 1983) Google Scholar
  6. 6.
    P.S.R. Diniz, L.C.R. de Barcellos, S.L. Netto, Design of cosine-modulated filter bank prototype filters using the frequency-response masking approach, in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing, vol. 6, Salt Lake City, USA, 2001, pp. 3621–3624 Google Scholar
  7. 7.
    E. Elias, P. Löwenborg, H. Johansson, L. Wanhammar, Tree-structured IIR/FIR uniform-band and octave-band filter banks with very low-complexity analysis or synthesis filters. Signal Process. (EURASIP) 83(9), 1997–2009 (2003) MATHGoogle Scholar
  8. 8.
    A. Eshraghi, T.S. Fiez, A comparative analysis of parallel delta-sigma ADC architectures. IEEE Trans. Signal Process. 51(3), 450–458 (2004) Google Scholar
  9. 9.
    B. Farhang-Boroujeny, Multicarrier modulation with blind detection capability using cosine modulated filter banks. IEEE Trans. Commun. 51(12), 2057–2070 (2003) CrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Fettweis, Wave digital filters: Theory and practice. Proc. IEEE 74(2), 270–327 (1986) CrossRefGoogle Scholar
  11. 11.
    N.J. Fliege, Multirate Digital Signal Processing (Wiley, New York, 1994) Google Scholar
  12. 12.
    M.B. Furtado Jr., P.S.R. Diniz, S.L. Netto, T. Saramäki, On the design of high-complexity cosine-modulated transmultiplexers based on the frequency-response masking approach. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(11), 2413–2426 (2005) CrossRefGoogle Scholar
  13. 13.
    L. Gazsi, Explicit formulas for lattice wave digital filters. IEEE Trans. Circuits Syst. CAS-32(1) (1985) Google Scholar
  14. 14.
    S. Haykin, Digital Communications (Wiley, New York, 1988) Google Scholar
  15. 15.
    P.N. Heller, T. Karp, T.Q. Nguyen, A general formulation of modulated filter banks. IEEE Trans. Signal Process. 47(4), 986–1002 (1999) CrossRefGoogle Scholar
  16. 16.
    H. Johansson, On high-speed recursive digital filters, in Proc. X European Signal Processing Conf., vol. 2. Tampere, Finland, Sept. 2000. Google Scholar
  17. 17.
    H. Johansson, P. Löwenborg, Flexible frequency-band reallocation network based on variable oversampled complex-modulated filter banks, in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing, Philadelphia, USA, Mar. 2005 Google Scholar
  18. 18.
    H. Johansson, P. Löwenborg, Flexible frequency-band reallocation networks using variable oversampled complex-modulated filter banks. EURASIP J. Adv. Signal Process. 2007, Article ID 63714, 15 pp. (2007), doi: 10.1155/2007/63714
  19. 19.
    H. Johansson, L. Wanhammar, Wave digital filter structures for high-speed narrow-band and wide-band filtering. IEEE Trans. Circuits Syst. II CAS-46(6) (1999) Google Scholar
  20. 20.
    H. Johansson, L. Wanhammar, High-speed recursive digital filters based on the frequency-response masking approach. IEEE Trans. Circuits Syst. II 47(1), 48–61 (2000) CrossRefGoogle Scholar
  21. 21.
    J.F. Kaiser, Nonrecursive digital filter design using I 0-sinh window function, in Proc. IEEE Int. Symp. Circuits Syst., vol. 3, 1974, pp. 20–23 Google Scholar
  22. 22.
    S.G. Kim, C.D. Yoo, Highly selective M-channel IIR cosine-modulated filter banks. Electron. Lett. 39(20), 1478–1479 (2003) CrossRefGoogle Scholar
  23. 23.
    M. Lang, Optimal weighted phase equalization according to the L -norm. Signal Process. 27(1), 87–98 (1992) MATHCrossRefGoogle Scholar
  24. 24.
    Y.C. Lim, Frequency-response masking approach for the synthesis of sharp linear phase digital filters. IEEE Trans. Circuits Syst. CAS-33(4), 357–364 (1986) Google Scholar
  25. 25.
    W.S. Lu, T. Saramäki, R. Bregovic, Design of practically perfect-reconstruction cosine-modulated filter banks: A second-order cone programming approach. IEEE Trans. Circuits Syst. 51, 552–563 (2004) Google Scholar
  26. 26.
    P. Löwenborg, H. Johansson, L. Wanhammar, Two-channel digital and hybrid analog/digital multirate filter banks with very low complexity analysis or synthesis filters. IEEE Trans. Circuits Syst. II 50(7) (2003) Google Scholar
  27. 27.
    J.S. Mao, S.C. Chan, K.L. Ho, Theory and design of a class of M-channel IIR cosine-modulated filter banks. IEEE Signal Process. Lett. 7(2), 38–40 (2000) CrossRefGoogle Scholar
  28. 28.
    J.H. McClellan, T.W. Parks, L.R. Rabiner, A computer program for designing optimum FIR linear phase digital filters. IEEE Trans. Audio Electroacoust. AU-21, 506–526 (1973) CrossRefGoogle Scholar
  29. 29.
    P.A. Naylor, O. Tarikulu, A.G. Constantinides, Subband adaptive filtering for acoustic echo control using allpass polyphase IIR filterbanks. IEEE Trans. Signal Process. 6(2), 143–155 (1998) Google Scholar
  30. 30.
    T.Q. Nguyen, Near-perfect-reconstruction pseudo-QMF banks. IEEE Trans. Signal Process. 42(1), 65–76 (1994) CrossRefGoogle Scholar
  31. 31.
    T.Q. Nguyen, T.I. Laakso, T.E. Tuncer, On perfect-reconstruction allpass-based cosine-modulated IIR filter banks, in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, London, England, 1994, pp. 33–36 Google Scholar
  32. 32.
    P. Noll, MPEG digital audio coding. IEEE Signal Process. Mag. 14(5), 59–81 (1997) CrossRefMathSciNetGoogle Scholar
  33. 33.
    D. Pinchon, R. Siohan, C. Sidet, A fast design method for orthogonal modulated filter banks, in Proc. IEEE Int. Acoustics, Speech, and Signal Processing, vol. 2, 2002, pp. 1177–1180 Google Scholar
  34. 34.
    M. Renfors, T. Saramäki, A class of approximately linear phase digital filters composed of allpass subfilters, in Proc. IEEE Int. Symp. Circuits Syst., vol. 1, San José, CA, May 1986, pp. 678–681 Google Scholar
  35. 35.
    L. Rosenbaum, P. Löwenborg, H. Johansson, An approach for synthesis of modulated M-channel FIR filter banks utilizing the frequency-response masking technique. EURASIP J. Adv. Signal Process. 2007, Article ID 68285, 13 p. (2007). doi: 10.1155/2007/68285
  36. 36.
    T. Saramäki, A generalized class of cosine modulated filter banks, in Proc. First Int. Workshop Transforms Filter Banks, Feb. 1998, pp. 336–365 Google Scholar
  37. 37.
    T. Saramäki, R. Bregovic, An efficient approach for designing nearly perfect-reconstruction cosine-modulated and modified DFT filter banks, in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing, vol. 6, May 2001, pp. 3617–3620 Google Scholar
  38. 38.
    T. Saramäki, R. Bregovic, Multirate systems and filter banks, in Multirate Systems: Design & Applications, ed. by G. Jovanovic-Dolecek, Chap. 2 (Idea Group Publ., 2002), pp. 27–85 Google Scholar
  39. 39.
    L. Svensson, P. Löwenborg, H. Johansson, Asymmetric cosine modulated causal IIR/FIR NPR filter banks, in Proc. Second Int. Workshop Spectral Methods Multirate Signal Processing, Toulouse, France, Sept. 2002 Google Scholar
  40. 40.
    L. Svensson, P. Löwenborg, H. Johansson, A class of cosine modulated causal IIR filter banks, in Proc. IEEE Int. Conf. Electronics Circuits Syst., Dubrovnik, Croatia, vol. 3, Sept. 2002, pp. 915–918 Google Scholar
  41. 41.
    P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, 1993) MATHGoogle Scholar
  42. 42.
    P.P. Vaidyanathan, Filter banks in digital communications. IEEE Circuits Syst. Mag. 1(2), 4–25 (2001) Google Scholar
  43. 43.
    S. Vanka, M.J. Dehghani, R. Aravind, K.M.M. Prabhu, A class of M-channel reduced complexity IIR cosine modulated filter banks, in Proc. Conf. on Convergent Technologies for Asia-Pacific Region, TENCON 03, vol. 3, Oct. 2003, pp. 1040–1043 Google Scholar
  44. 44.
    S. Znidar, Cosine-modulated perfect reconstruction IIR filter bank with good time-frequency resolution, in Proc. 13th Int. Conf. Digital Signal Processing, vol. 2, 1997, pp. 1067–1070 Google Scholar

Copyright information

© Birkhäuser Boston 2009

Authors and Affiliations

  • Linnéa Rosenbaum
    • 1
  • Per Löwenborg
    • 1
  • Håkan Johansson
    • 1
  1. 1.Division of Electronics Systems, Department of Electrical EngineeringLinköping UniversityLinköpingSweden

Personalised recommendations