Advertisement

Time evolution of a Vlasov–Poisson plasma with different species and infinite mass in \({\mathbb {R}}^3\)

  • Silvia Caprino
  • Guido CavallaroEmail author
  • Carlo Marchioro
Article
  • 40 Downloads

Abstract

We study existence and uniqueness of the solution to the Vlasov–Poisson system describing a plasma constituted by different species evolving in \({\mathbb {R}}^3\), whose particles interact via the Coulomb potential. The species can have both positive or negative charge. It is assumed that initially the particles are distributed according to a spatial density with a power-law decay in space, allowing for unbounded mass, and an exponential decay in velocities given by a Maxwell–Boltzmann law, extending a result contained in Caprino et al. (J Stat Phys 169:1066–1097,2017), which was restricted to finite total mass.

Keywords

Vlasov–Poisson equation Coulomb interaction Infinitely extended plasma 

Mathematics Subject Classification

82D10 35Q99 76X05 

Notes

Acknowledgements

This work was performed under the auspices of GNFM-INDAM and the Italian Ministry of the University (MIUR).

References

  1. 1.
    Batt, J., Rein, G.: Global classical solutions of a periodic Vlasov-Poisson system in three dimensions. C.R. Acad. Sci. Paris 313, 411–416 (1991)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Caglioti, E., Caprino, S., Marchioro, C., Pulvirenti, M.: The Vlasov equation with infinite mass. Arch. Rational Mech. Anal. 159, 85–108 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinet. Relat. Models 5, 729–742 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caprino, D., Cavallaro, G., Marchioro, C.: On a magnetically confined plasma with infinite charge. SIAM J. Math. Anal. 46(1), 133–164 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Caprino, S., Cavallaro, G., Marchioro, C.: Remark on a magnetically confined plasma with infinite charge. Rend. Mat. Appl. 35, 69–98 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Caprino, S., Cavallaro, G., Marchioro, C.: On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror. J. Math. Anal. Appl. 427, 31–46 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of a Vlasov-Poisson plasma with infinite charge in \({\mathbb{R}}^3\). Commun. Part. Differ. Equ. 40, 357–385 (2015)CrossRefGoogle Scholar
  8. 8.
    Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of an infinitely extended Vlasov system with singular mutual interaction. J. Stat. Phys. 162, 426–456 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Caprino, S., Cavallaro, G., Marchioro, C.: A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinet. Relat. Models 9, 657–686 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Caprino, S., Cavallaro, G., Marchioro, C.: On the magnetic shield for a Vlasov-Poisson plasma. J. Stat. Phys. 169, 1066–1097 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Caprino, S., Cavallaro, G., Marchioro, C.: The Vlasov-Poisson equation in \({\mathbb{R}}^3\) with infinite charge and velocities. J. Hyperbolic Differ. Equ. 15, 407–442 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Caprino, S., Cavallaro, G., Marchioro, C.: Efficacy of a magnetic shield against a Vlasov-Poisson plasma. Rep. Math. Phys. 84, 85–116 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Caprino, S., Cavallaro, G., Marchioro, C.: On the two dimensional Vlasov-Helmholtz equation with infinite mass. Commun. Part. Differ. Equ. 27(384), 791–808 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Castella, F.: Propagation of space moments in the Vlasov-Poisson Equation and further results. Ann. Inst. Henri Poincaré 16(4), 503–533 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, Z.: The Vlasov-Poisson system with low steady asymptotics. J. Math. Phys. 56(12), 121503 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)CrossRefGoogle Scholar
  17. 17.
    Jabin, P.-E.: The Vlasov-Poisson system with infinite mass and energy. J. Stat. Phys. 103, 1107–1123 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415–430 (1996)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pallard, C.: Moment propagation for weak solutions to the Vlasov-Poisson system. Commun. Part. Differ. Equ. 37, 1273–1285 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pallard, C.: Space moments of the Vlasov-Poisson system: propagation and regularity. SIAM J. Math. Anal. 46(3), 1754–1770 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pankavich, S.: Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics. Commun. Part. Differ. Equ. 31, 349–370 (2006)CrossRefGoogle Scholar
  22. 22.
    Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rein, G.: Growth Estimates for the solutions of the Vlasov-Poisson System in the Plasma Physics Case. Math. Nachr. 191, 269–278 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Part. Differ. Equ. 16(8–9), 1313–1335 (1991)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schaeffer, J.: The Vlasov-Poisson system with steady spatial asymptotics. Commun. Part. Differ. Equ. 28(8–9), 1057–1084 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schaeffer, J.: Steady spatial asymptotics for the Vlasov-Poisson system. Math. Method Appl. Sci. 26, 273–296 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schaeffer, J.: Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinet. Relat. Model 5, 129–153 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wollman, S.: Global in time solution to the three-dimensional Vlasov-Poisson system. J. Math. Anal. Appl. 176(1), 76–91 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Silvia Caprino
    • 1
  • Guido Cavallaro
    • 2
    Email author
  • Carlo Marchioro
    • 3
  1. 1.Dipartimento di Matematica Università Tor VergataRomaItaly
  2. 2.Dipartimento di Matematica Università La SapienzaRomaItaly
  3. 3.International Research Center M & MOCS (Mathematics and Mechanics of Complex Systems)L’AquilaItaly

Personalised recommendations