Time evolution of a Vlasov–Poisson plasma with different species and infinite mass in \({\mathbb {R}}^3\)
Article
First Online:
- 40 Downloads
Abstract
We study existence and uniqueness of the solution to the Vlasov–Poisson system describing a plasma constituted by different species evolving in \({\mathbb {R}}^3\), whose particles interact via the Coulomb potential. The species can have both positive or negative charge. It is assumed that initially the particles are distributed according to a spatial density with a power-law decay in space, allowing for unbounded mass, and an exponential decay in velocities given by a Maxwell–Boltzmann law, extending a result contained in Caprino et al. (J Stat Phys 169:1066–1097,2017), which was restricted to finite total mass.
Keywords
Vlasov–Poisson equation Coulomb interaction Infinitely extended plasmaMathematics Subject Classification
82D10 35Q99 76X05Notes
Acknowledgements
This work was performed under the auspices of GNFM-INDAM and the Italian Ministry of the University (MIUR).
References
- 1.Batt, J., Rein, G.: Global classical solutions of a periodic Vlasov-Poisson system in three dimensions. C.R. Acad. Sci. Paris 313, 411–416 (1991)MathSciNetzbMATHGoogle Scholar
- 2.Caglioti, E., Caprino, S., Marchioro, C., Pulvirenti, M.: The Vlasov equation with infinite mass. Arch. Rational Mech. Anal. 159, 85–108 (2001)MathSciNetCrossRefGoogle Scholar
- 3.Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinet. Relat. Models 5, 729–742 (2012)MathSciNetCrossRefGoogle Scholar
- 4.Caprino, D., Cavallaro, G., Marchioro, C.: On a magnetically confined plasma with infinite charge. SIAM J. Math. Anal. 46(1), 133–164 (2014)MathSciNetCrossRefGoogle Scholar
- 5.Caprino, S., Cavallaro, G., Marchioro, C.: Remark on a magnetically confined plasma with infinite charge. Rend. Mat. Appl. 35, 69–98 (2014)MathSciNetzbMATHGoogle Scholar
- 6.Caprino, S., Cavallaro, G., Marchioro, C.: On a Vlasov-Poisson plasma confined in a torus by a magnetic mirror. J. Math. Anal. Appl. 427, 31–46 (2015)MathSciNetCrossRefGoogle Scholar
- 7.Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of a Vlasov-Poisson plasma with infinite charge in \({\mathbb{R}}^3\). Commun. Part. Differ. Equ. 40, 357–385 (2015)CrossRefGoogle Scholar
- 8.Caprino, S., Cavallaro, G., Marchioro, C.: Time evolution of an infinitely extended Vlasov system with singular mutual interaction. J. Stat. Phys. 162, 426–456 (2016)MathSciNetCrossRefGoogle Scholar
- 9.Caprino, S., Cavallaro, G., Marchioro, C.: A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinet. Relat. Models 9, 657–686 (2016)MathSciNetCrossRefGoogle Scholar
- 10.Caprino, S., Cavallaro, G., Marchioro, C.: On the magnetic shield for a Vlasov-Poisson plasma. J. Stat. Phys. 169, 1066–1097 (2017)MathSciNetCrossRefGoogle Scholar
- 11.Caprino, S., Cavallaro, G., Marchioro, C.: The Vlasov-Poisson equation in \({\mathbb{R}}^3\) with infinite charge and velocities. J. Hyperbolic Differ. Equ. 15, 407–442 (2018)MathSciNetCrossRefGoogle Scholar
- 12.Caprino, S., Cavallaro, G., Marchioro, C.: Efficacy of a magnetic shield against a Vlasov-Poisson plasma. Rep. Math. Phys. 84, 85–116 (2019)MathSciNetCrossRefGoogle Scholar
- 13.Caprino, S., Cavallaro, G., Marchioro, C.: On the two dimensional Vlasov-Helmholtz equation with infinite mass. Commun. Part. Differ. Equ. 27(384), 791–808 (2002)MathSciNetCrossRefGoogle Scholar
- 14.Castella, F.: Propagation of space moments in the Vlasov-Poisson Equation and further results. Ann. Inst. Henri Poincaré 16(4), 503–533 (1999)MathSciNetCrossRefGoogle Scholar
- 15.Chen, Z.: The Vlasov-Poisson system with low steady asymptotics. J. Math. Phys. 56(12), 121503 (2015)MathSciNetCrossRefGoogle Scholar
- 16.Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)CrossRefGoogle Scholar
- 17.Jabin, P.-E.: The Vlasov-Poisson system with infinite mass and energy. J. Stat. Phys. 103, 1107–1123 (2001)MathSciNetCrossRefGoogle Scholar
- 18.Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415–430 (1996)MathSciNetzbMATHGoogle Scholar
- 19.Pallard, C.: Moment propagation for weak solutions to the Vlasov-Poisson system. Commun. Part. Differ. Equ. 37, 1273–1285 (2012)MathSciNetCrossRefGoogle Scholar
- 20.Pallard, C.: Space moments of the Vlasov-Poisson system: propagation and regularity. SIAM J. Math. Anal. 46(3), 1754–1770 (2014)MathSciNetCrossRefGoogle Scholar
- 21.Pankavich, S.: Global existence for the three dimensional Vlasov-Poisson system with steady spatial asymptotics. Commun. Part. Differ. Equ. 31, 349–370 (2006)CrossRefGoogle Scholar
- 22.Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)MathSciNetCrossRefGoogle Scholar
- 23.Rein, G.: Growth Estimates for the solutions of the Vlasov-Poisson System in the Plasma Physics Case. Math. Nachr. 191, 269–278 (1998)MathSciNetCrossRefGoogle Scholar
- 24.Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Part. Differ. Equ. 16(8–9), 1313–1335 (1991)MathSciNetCrossRefGoogle Scholar
- 25.Schaeffer, J.: The Vlasov-Poisson system with steady spatial asymptotics. Commun. Part. Differ. Equ. 28(8–9), 1057–1084 (2003)MathSciNetCrossRefGoogle Scholar
- 26.Schaeffer, J.: Steady spatial asymptotics for the Vlasov-Poisson system. Math. Method Appl. Sci. 26, 273–296 (2003)MathSciNetCrossRefGoogle Scholar
- 27.Schaeffer, J.: Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinet. Relat. Model 5, 129–153 (2012)MathSciNetCrossRefGoogle Scholar
- 28.Wollman, S.: Global in time solution to the three-dimensional Vlasov-Poisson system. J. Math. Anal. Appl. 176(1), 76–91 (1993)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019