Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier–Besov spaces
- 155 Downloads
Abstract
In this paper, we obtain the global well-posedness and analyticity of the 3D fractional magnetohydrodynamics equations in the critical variable Fourier–Besov spaces, which can be seen as a meaningful complement to the corresponding results of the magnetohydrodynamics equations in usual Fourier–Besov spaces. Moreover, our results are also new for the MHD equations (i.e., in the case of the classical dissipation \(\alpha = 1\)).
Keywords
Magnetohydrodynamics Fractional MHD Variable Fourier–Besov spaces Gevrey classMathematics Subject Classification
Primary 42B37 76W05 46F30 Secondary 35S30 49N60Notes
Acknowledgements
The author wishes to express his thanks to Professor Ping Zhang from the Academy of Mathematics and Systems Science in Chinese Academy of Sciences for giving a guide to mathematical fluid mechanics. And the author would like to express his gratitude to the anonymous referees for their careful reading of the paper and valuable suggestions.
References
- 1.Abidi, H., Zhang, P.: On the global solution of a 3-D MHD system with initial data near equilibrium. Comm. Pure Appl. Math. 70, 1509–1561 (2016)MathSciNetzbMATHGoogle Scholar
- 2.Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)MathSciNetzbMATHGoogle Scholar
- 3.Almeida, M.F., Ferreira, L.C.F., Lima, L.S.M.: Uniform global well-posedness of the Navier–Stokes–Coriolis system in a new critical space. Math. Z. 287, 735–750 (2017)MathSciNetzbMATHGoogle Scholar
- 4.Bae, H., Biswas, A., Tadmor, E.: Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces. Arch. Ration. Mech. Anal. 205, 963–991 (2012)MathSciNetzbMATHGoogle Scholar
- 5.Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 343. Springer, Heidelberg (2011)Google Scholar
- 6.Cannone, M.: Ondelettes. Paraproduits et Navier–Stokes. Arts et Sciences, Diderot editeur (1995)Google Scholar
- 7.Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoamericana 13, 515–541 (1997)MathSciNetzbMATHGoogle Scholar
- 8.Chemin, J.: Remarks on global existence for the incompressible Navier–Stokes equations. SIAM J. Math. Anal. 23, 20–28 (1992)MathSciNetzbMATHGoogle Scholar
- 9.Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in \(\mathbb{R}^{3}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 599–624 (2009)Google Scholar
- 10.Chemin, J.-Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362, 2859–2873 (2010)MathSciNetzbMATHGoogle Scholar
- 11.Cannone, M., Wu, G.: Global well-posedness for Navier–Stokes equations in critical Fourier–Herz spaces. Nonlinear Anal. 75, 3754–3760 (2012)MathSciNetzbMATHGoogle Scholar
- 12.Cruz-Uribe, D.: The Hardy–Littlewood maximal operator on variable-\(L^p\) spaces. In: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), 147–156, Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville (2003)Google Scholar
- 13.Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces, Foundations and Harmonic Analysis. In: Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg (2013)Google Scholar
- 14.Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
- 15.Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}(\mathbb{R}^n)\). Math. Inequal. Appl. 7, 245–253 (2004)MathSciNetzbMATHGoogle Scholar
- 16.Diening, L., et al.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)zbMATHGoogle Scholar
- 17.Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)zbMATHGoogle Scholar
- 18.Fan, X.: Regularity of nonstandard Lagrangians \(f(x, \xi )\). Nonlinear Anal. 27, 669–678 (1996)MathSciNetzbMATHGoogle Scholar
- 19.Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)MathSciNetzbMATHGoogle Scholar
- 20.Fefferman, C. L.: Existence and smoothness of the Navier-Stokes equation, Clay Mathematics Institute. http://www.claymath.org/sites/default/files/navierstokes.pdf. Accessed 1 May 2019
- 21.Ferreira, L.C.F., Lima, L.S.M.: Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces. Monatsh. Math. 175, 491–509 (2014)MathSciNetzbMATHGoogle Scholar
- 22.Ferreira, L.C.F., Villamizar-Roa, E.J.: Exponentially-stable steady flow and asymptotic behavior for the magnetohydrodynamic equations. Commun. Math. Sci. 9, 499–516 (2011)MathSciNetzbMATHGoogle Scholar
- 23.Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)MathSciNetzbMATHGoogle Scholar
- 24.Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)MathSciNetzbMATHGoogle Scholar
- 25.He, C., Huang, X., Wang, Y.: On some new global existence results for 3D magnetohydrodynamic equations. Nonlinearity 27, 343–352 (2014)MathSciNetzbMATHGoogle Scholar
- 26.Hopf, E.: On the initial value problem for the basic hydrodynamic equations. Math. Nachr. 4, 213–231 (1951)MathSciNetGoogle Scholar
- 27.Iwabuchi, T.: Global well-posedness for Keller–Segel system in Besov type spaces. J. Math. Anal. Appl. 379, 930–948 (2011)MathSciNetzbMATHGoogle Scholar
- 28.Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal. 267, 1321–1337 (2014)MathSciNetzbMATHGoogle Scholar
- 29.Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equations in \(\mathbb{R}^m\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)MathSciNetzbMATHGoogle Scholar
- 30.Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)MathSciNetzbMATHGoogle Scholar
- 31.Konieczny, P., Yoneda, T.: On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations. J. Differ. Equ. 250, 3859–3873 (2011)MathSciNetzbMATHGoogle Scholar
- 32.Kováčik, O., Rákosňik, J.: On spaces \(L^p(x)\) and \(W^{k, p}(x)\). Czechoslovak Math. J. 116, 592–618 (1991)zbMATHGoogle Scholar
- 33.Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differ. Equ. 19, 959–1014 (1994)MathSciNetzbMATHGoogle Scholar
- 34.Lei, Z., Lin, F.: Global mild solutions of Navier–Stokes equations. Commun. Pure Appl. Math. 64, 1297–1304 (2011)MathSciNetzbMATHGoogle Scholar
- 35.Lemarié-Rieusset, P. G.: Recent developments in the Navier–Stokes problem. Chapman & Hall\(\backslash \) CRC Research Notes in Mathematics, vol. 431. Chapman & Hall\(\backslash \) CRC, Boca Raton, FL (2002)Google Scholar
- 36.Leray, J.: On the motion of a viscous liquid filling space. Acta Math. 63, 193–248 (1934)MathSciNetzbMATHGoogle Scholar
- 37.Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)MathSciNetzbMATHGoogle Scholar
- 38.Lin, F., Zhang, P.: Global small solutions to MHD type system (I): 3-D case. Commun. Pure Appl. Math. 67, 531–580 (2014)MathSciNetzbMATHGoogle Scholar
- 39.Liu, Q., Zhao, J.: Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier–Herz spaces. J. Math. Anal. Appl. 420, 1301–1315 (2014)MathSciNetzbMATHGoogle Scholar
- 40.Ma, H., Zhai, X., Yan, W., Li, Y.: Global strong solution to the 3D incompressible magnetohydrodynamic system in the scaling invariant Besov–Sobolev-type spaces. Z. Angew. Math. Phys. 68, 14 (2017)MathSciNetzbMATHGoogle Scholar
- 41.Orlicz, W.: Über konjugierte Exponentenfolgen. Studia Math. 3, 200–212 (1931)zbMATHGoogle Scholar
- 42.Paicu, M., Zhang, P.: Global solutions to the 3-D incompressible anisotropic Navier–Stokes system in the critical spaces. Commun. Comput. Phys. 307, 713–759 (2011)MathSciNetzbMATHGoogle Scholar
- 43.Planchon, F.: Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in \(\mathbb{R}^3\). Ann. Inst. Henri Poincare 13, 319–336 (1996)MathSciNetzbMATHGoogle Scholar
- 44.Ru, S., Abidin, M.Z.: Global well-posedness of the incompressible fractional Navier–Stokes equations in Fourier–Besov spaces with variable exponents. Comput. Math. Appl. 77, 1082–1090 (2019)MathSciNetGoogle Scholar
- 45.Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Ser. Nonlinear Anal. Appl., vol. 3. Walter de Gruyter & Co., Berlin (1996)Google Scholar
- 46.R\(\rm \mathring{u}\)žička, M.: Electrorheological Fluids, Modeling and Mathematical Theory. Lecture Notes in Math., vol. 1748, Springer-Verlag, Berlin (2000)Google Scholar
- 47.Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)MathSciNetzbMATHGoogle Scholar
- 48.Wang, W.: Global existence and analyticity of mild solutions for the stochastic Navier–Stokes–Coriolis equations in Besov spaces. Nonlinear Anal. Real World Appl 52, 103048 (2020). https://doi.org/10.1016/j.nonrwa.2019.103048 MathSciNetCrossRefGoogle Scholar
- 49.Wang, W.: Global well-posedness and analyticity for the generalized rotating Navier–Stokes equations in Fourier–Herz spaces (manuscript)Google Scholar
- 50.Wang, W., Wu, G.: Global mild solution of the generalized Navier–Stokes equations with the Coriolis force. Appl. Math. Lett. 76, 181–186 (2018)MathSciNetzbMATHGoogle Scholar
- 51.Wang, Y., Wang, K.: Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal. Real World Appl. 17, 245–251 (2014)MathSciNetzbMATHGoogle Scholar
- 52.Xu, J.-S.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)MathSciNetzbMATHGoogle Scholar
- 53.Yamazaki, M.: The Navier–Stokes equations in the weak-\(L^n\) space with time-dependent external force. Math. Ann. 317, 635–675 (2000)MathSciNetzbMATHGoogle Scholar
- 54.Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269, 1840–1898 (2015)MathSciNetzbMATHGoogle Scholar
- 55.Ye, Z.: Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann. Mat. Pura Appl. 4(195), 1111–1121 (2016)MathSciNetzbMATHGoogle Scholar
- 56.Zhang, T.: Global wellposedness problem for the 3-D incompressible anisotropic Navier–Stokes equations in an anisotropic space. Comm. Math. Phys. 287, 211–224 (2009)MathSciNetzbMATHGoogle Scholar