Advertisement

Asymptotic behavior of D-solutions to the steady Navier–Stokes flow in an exterior domain of a half-space

  • Zhengguang Guo
  • Peter WittwerEmail author
  • Yong Zhou
Article
  • 10 Downloads

Abstract

We consider the problem of a small body moving within an incompressible fluid at constant speed parallel to a wall, in an otherwise unbounded domain. This situation is modeled by the incompressible steady Navier–Stokes equations in an exterior domain in a half-space, with appropriate boundary conditions on the wall, the body and at infinity. In this paper, we first prove in a very general setup the existence of weak solutions for the problem with the body. Then, we show that any such solution can be truncated and then extended to provide a weak solution for a simplified problem where the body is replaced by a (small) source term with compact support. This simplified problem was already shown to possess strong solutions. We then prove a weak–strong uniqueness theorem to show the uniqueness of solutions for the simplified problem. Finally, we show that this also implies the uniqueness of solutions for the problem of the moving body which proves that the solutions of both problems have the same asymptotic behavior at infinity.

Keywords

Steady Navier–Stokes equations Fluid–structure interaction Weak solution 

Mathematics Subject Classification

35Q30 76D05 35B40 35B42 

Notes

Acknowledgements

Zhengguang Guo expresses his gratitude to Peter Wittwer for his hospitality during the stay at the University of Geneva. The authors thank the anonymous referee for his helpful comments on the initial version of this paper.

References

  1. 1.
    Bunner, B., Tryggvason, G.: Direct numerical simulations of three-dimensional bubbly flows. Phys. Fluids 11, 1967–1969 (1999)CrossRefGoogle Scholar
  2. 2.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)zbMATHGoogle Scholar
  3. 3.
    Baalen, G.V., Wittwer, P.: Time periodic solutions of the Navier–Stokes equations with nonzero constant boundary conditions at infinity. SIAM J. Math. Anal. 43, 1787–1809 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang, H.: The steady Navier–Stokes problem for low Reynolds number viscous jets into a half space. In: Heywood J.G., Masuda K., Rautmann R., Solonnikov V.A. (eds.) The Navier–Stokes Equations II—Theory and Numerical Methods. Lecture Notes in Mathematics, vol. 1530. Springer, Berlin (1992)CrossRefGoogle Scholar
  5. 5.
    Esmaeeli, A., Tryggvason, G.: A direct numerical simulation study of the buoyant rise of bubbles at \(O(100)\) Reynolds number. Phys. Fluids 17, 093303–093322 (2005)CrossRefGoogle Scholar
  6. 6.
    Farwig, R.: The stationary exterior 3-D problem of Oseen and Navier–Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211, 409–447 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, vol. I. In: Springer Tracts in Natural Philosophy, vol. 38. Linearized Steady Problems. Springer, New York (1994)Google Scholar
  8. 8.
    Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations, vol. II. In: Springer Tracts in Natural Philosophy, vol. 39. Nonlinear Steady Problems. Springer, New York (1994)Google Scholar
  9. 9.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)zbMATHGoogle Scholar
  10. 10.
    Guillod, J.: On the stationary Navier–Stokes equations in two dimensions. Ph.D. thesis, Geneva (2015)Google Scholar
  11. 11.
    Guo, Z., Wittwer, P., Zhou, Y.: Existence of stationary solutions of the Navier–Stokes equations in the presence of a wall. Z. Angew. Math. Phys. 64, 1493–1542 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guo, Z., Wittwer, P., Zhou, Y.: Leading order asymptotics of stationary Navier–Stokes flows in the presence of a wall. Math. Models Methods Appl. Sci. 22, 1150018 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hillairet, M.: Interactive features in fluid mechanics. Ph.D. thesis, Ecole normale supérieure de Lyon (2005)Google Scholar
  14. 14.
    Hillairet, M., Wittwer, P.: Asymptotic description of solutions of the planar exterior Navier–Stokes problem in a half space. Arch. Ration. Mech. Anal. 205, 553–584 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hua, J., Lou, J.: Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222, 769–795 (2007)CrossRefGoogle Scholar
  16. 16.
    Hillairet, M., Serre, D.: Chute stationnaire d’un solide dans un fluide visqueux incompressible le long d’un plan inclin é. Ann. Inst. H. Poincaré Anal. Non Linéaire 20, 779–803 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hillairet, M., Wittwer, P.: Existence of stationary solutions of the Navier–Stokes equations in two dimensions in the presence of a wall. J. Evol. Equ. 9, 675–706 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Leray, J.: Étude de diverses équations inté grales non linéaire et de quelques problémes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)zbMATHGoogle Scholar
  19. 19.
    Lu, J., Tryggvason, G.: Numerical study of turbulent bubbly downflows in a vertical channel. Phys. Fluids 18, 103302–103312 (2006)CrossRefGoogle Scholar
  20. 20.
    Serre, D.: Chute libre d’un solide dans un fluide visqueux incompressible. Exist. Jpn. J. Appl. Math. 4, 99–110 (1987)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tidblom, J.: A Hardy inequality in the half-space. J. Funct. Anal. 221, 482–495 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Timkin, L., Gorelik, R., Lobanov, P.: Rise of a single bubble in ascending laminar flow: slip velocity and wall friction. J. Eng. Phys. Thermophys. 78, 762–768 (2005)CrossRefGoogle Scholar
  23. 23.
    Takemura, F., Magnaudet, J.: The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number. J. Fluid Mech. 495, 235–253 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsHuaiyin Normal UniversityHuaianChina
  2. 2.Institute of Natural SciencesShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Theoretical Physics DepartmentUniversity of GenevaGenevaSwitzerland
  4. 4.School of Mathematics (Zhuhai)Sun Yat-Sen UniversityZhuhaiChina
  5. 5.Department of MathematicsZhejiang Normal UniversityJinhuaChina

Personalised recommendations