Advertisement

Supercritical degenerate parabolic–parabolic Keller–Segel system: existence criterion given by the best constant in Sobolev’s inequality

  • Jinhuan Wang
  • Yue Li
  • Li ChenEmail author
Article
  • 21 Downloads

Abstract

This article presents a relationship between the sharp constant of the Sobolev inequality and the initial criterion to the global existence of degenerate parabolic–parabolic Keller–Segel system with the diffusion exponent \(\frac{2n}{2+n}<m<2-\frac{2}{n}\). The global weak solution obtained in this article does not need any smallness assumption on the initial data. Furthermore, a uniform in time \(L^{\infty }\) estimate of the weak solutions is obtained via the Moser iteration, where the constant in \(L^p\) estimate for the gradient of the chemical concentration has been exactly formulated in order to complete the iteration process.

Keywords

Degenerate Keller–Segel system Supercritical exponent \(L^\infty \) estimate Free energy 

Mathematics Subject Classification

Primary 35B44 Secondary 35K55 

Notes

References

  1. 1.
    Bian, S., Liu, J.-G., Zou, C.: Ultra-contractivity for Keller–Segel model with diffusion exponent \(m > 1-2/d\). Kinet. Relat. Models 7, 9–28 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blanchet, A., Carrillo, J.A., Laurencot, P.: Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calc. Var. 35, 133–168 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blanchet, A., Laurençot, P.: The parabolic–parabolic Keller–Segel system with critical diffusion as a gradient flow in \({\mathbb{R}}^d\), \(d\ge 3\). Commun. Partial Differ. Equ. 38, 658–686 (2012)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Jüngel, A., Liu, J.-G.: A note on Aubin–Lions–Dubinski lemma. Acta Appl. Math. 133, 33–43 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, L., Liu, J.-G., Wang, J.: Multidimensional degenerate Keller–Segel system with critical diffusion exponent \(2n/(n+2)\). SIAM J. Math. Anal. 44, 1077–1102 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, L., Wang, J.: Exact criterion for global existence and blow up to a degenerate Keller–Segel system. Doc. Math. 19, 103–120 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dolbeault, J., Esteban, M.J., Laptev, A., Loss, M.: One-dimensional Gagliardo–Nirenberg–Sobolev inequalities: remarks on duality and flows. J. Lond. Math. Soc. 90, 525–550 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. AMS, Providence (2002)Google Scholar
  9. 9.
    Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differ. Equ. 252, 1421–1440 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)Google Scholar
  11. 11.
    Lions, P.-L.: Symétrie et compacité dans les espaces de sobolev. J. Funct. Anal. 49, 315–334 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liu, J.-G., Wang, J.: A note on \(L^\infty \)-estimate and uniqueness to a degenerate Keller–Segel model. Acta Appl. Math. 142, 173–188 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, J.-G., Wang, J.H.: A generalized Sz. Nagy inequality in higher dimensions and the critical thin film equation. Nonlinearity 30, 35–60 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hieber, M., Prüss, J.: Heat kernels and maximal \(L^p\)\(L^q\) estimates for parabolic evolution equations. Commun. Partial Differ. Equ. 22, 1647–1669 (1997)CrossRefGoogle Scholar
  15. 15.
    Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller–Segel systems. Differ. Integral Equ. 19, 841–876 (2006)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsLiaoning UniversityShenyangPeople’s Republic of China
  2. 2.Department of MathematicsNanjing UniversityNanjingPeople’s Republic of China
  3. 3.Lehrstuhl für Mathematik IVUniversität MannheimMannheimGermany

Personalised recommendations