Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect

  • A. J. A. RamosEmail author
  • M. M. Freitas
  • D. S. AlmeidaJr.
  • S. S. Jesus
  • T. R. S. Moura


In this paper, we study a one-dimensional dissipative system of piezoelectric beams with magnetic effect, based on the work of Morris and Özer (in: The proceedings of 52nd IEEE conference on decision & control, pp 3014–3019, 2013). Our main goal is to prove the system’s exponential stability independent of any relation between the coefficients using terms of feedback at the boundary and consequently prove their equivalence with the exact observability at the boundary.


Piezoelectric beams Exponential decay Boundary observability 

Mathematics Subject Classification

Primary 99Z99 Secondary 00A00 



The authors are grateful to the anonymous referees for their constructive remarks, which have enhanced the presentation of this paper.


A.J.A. Ramos and S.S. Jesus thank PIBIC-INTERIOR/UFPA for financial support. D.S. Almeida Júnior thanks the CNPq for financial support through the projects “Control and stabilization of Timoshenko systems: mathematical aspects, theoretical numerics and computational” (CNPq Grant 458866/2014-8, Universal Project - 2014) and “New guidelines for dissipative Timoshenko type systems at light of the second spectrum” (CNPq Grant 310423/2016-3).


  1. 1.
    Al-Zahrani, H.Y.S., Pal, J., Migliorato, M.A., Tse, G., Yu, D.: Piezoelectric field enhancement in III–V core–shell nanowires. Nano Energy 14, 382–391 (2015)CrossRefGoogle Scholar
  2. 2.
    Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling, Estimation and Control (Wiley–Masson Series Research in Applied Mathematics). Wiley, New York (1996)Google Scholar
  3. 3.
    Blanguernon, A., Léné, F., Bernadou, M.: Active control of a beam using a piezoceramic element. Smart Mater. Struct. 8(1), 116–124 (1999)CrossRefGoogle Scholar
  4. 4.
    Cady, W.G.: Piezoelectricity. Dover Publications, New York (1964)Google Scholar
  5. 5.
    Davi, G., Milazzo, A.: Multidomain boundary integral formulation for piezoelectric materials fracture mechanics. Int. J. Solids Struct. 38(40–41), 7065–7078 (2001)CrossRefGoogle Scholar
  6. 6.
    Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267–1324 (1998)CrossRefGoogle Scholar
  7. 7.
    Dietl, J.M., Wickenheiser, A.M., Garcia, E.: A Timoshenko beam model for cantilevered piezoelectric energy harvesters. Smart Mater. Struct. 19(5), 055018 (2010)CrossRefGoogle Scholar
  8. 8.
    Galassi, C., Dinescu, M., Uchino, K., Sayer, M.: Piezoelectric Materials: Advances in Science, Technology and Applications. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  9. 9.
    Haraux, A.: Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugaliae mathematica 46(3), 245–258 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kawai, H.: The Piezoelectricity of poly (vinylidene Fluoride). Jpn. J. Appl. Phys. 8, 975–976 (1969)CrossRefGoogle Scholar
  11. 11.
    Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. John Wiley, Masson (1994)zbMATHGoogle Scholar
  12. 12.
    Lions, J.L.: Exact controllability, stabilization and perturbations for distributed parameter systems. SIAM Rev. 30(1), 1–68 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lions, J.L.: Contrôlabilité Exacte Perturbations et Stabilisation de Systèmes Distribuès. Tome I, Masson (1988)Google Scholar
  14. 14.
    Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, vol. 398. Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton (1999)Google Scholar
  15. 15.
    Morris, K., Özer, A.Ö.: Strong stabilization of piezoelectric beams with magnetic effects. In: 52nd IEEE 125 Conference on Decision and Control. IEEE (2013)Google Scholar
  16. 16.
    Morris, K., Özer, A.Ö.: Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim. 52(4), 2371–2398 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Özer, A.Ö.: Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects. Math. Control Signals Syst. 27(2), 219–244 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefGoogle Scholar
  19. 19.
    Poulin-Vittrant, G., Oshman, C., Opoku, C., Dahiya, A.S., Camara, N., Alquier, D., Hue, L.-P.T.H., Lethiecq, M.: Fabrication and characterization of ZnO nanowire-based piezoelectric nanogenerators for low frequency mechanical energy harvesting. Phys. Procedia 70, 909–913 (2015)CrossRefGoogle Scholar
  20. 20.
    Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 ANSI/IEEE Standard on Piezoelectricity. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 43(5), 717 (1996)Google Scholar
  21. 21.
    Ramos, A.J.A., Souza, M.W.P.: Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation. Z. Angew. Math. Phys. 68(48), 11 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ramos, A.J.A., Gonçalves, C.S.L., Corrêa Neto, S.S.: Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. Math. Model. Numer. Anal. 52(1), 255–274 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tebou, L.T., Zuazua, E.: Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26, 337–365 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tebou, L.T.: Equivalence between observability and stabilization for a class of second order semilinear evolution. Discrete Contin. Dyn. Syst. 744–752 (2009)Google Scholar
  25. 25.
    Tichý, J., Erhart, J., Kittinger, E., Přívratská, J.: Fundamentals of Piezoelectric Sensorics Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Springer, New York (2010)CrossRefGoogle Scholar
  26. 26.
    Xiang, H.J., Shi, Z.F.: Static analysis for multi-layered piezoelectric cantilevers. Int. J. Solids Struct. 45(1), 113–128 (2008)CrossRefGoogle Scholar
  27. 27.
    Yang, J.: A Review of a few topics in piezoelectricity. Appl. Mech. Rev. 59(6), 335–345 (2006)CrossRefGoogle Scholar
  28. 28.
    Zhu, F., Ward, M.B., Li, J.-F., Milne, S.J.: Core-shell grain structures and ferroelectric properties of Na0.5K0.5NbO\(_3\)–LiTaO\(_3\)–BiScO\(_3\) piezoelectric ceramics. Data Brief 4, 34–39 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. J. A. Ramos
    • 1
    • 2
    Email author
  • M. M. Freitas
    • 1
    • 2
  • D. S. AlmeidaJr.
    • 1
  • S. S. Jesus
    • 2
  • T. R. S. Moura
    • 2
  1. 1.PhD Program in MathematicsFederal University of ParáBelémBrazil
  2. 2.Faculty of MathematicsFederal University of ParáSalinópolisBrazil

Personalised recommendations