On instability of standing waves for the mass-supercritical fractional nonlinear Schrödinger equation

  • Van Duong DinhEmail author


We consider the focusing \(L^2\)-supercritical fractional nonlinear Schrödinger equation
$$\begin{aligned} i\partial _t u - (-\varDelta )^s u = -|u|^\alpha u, \quad (t,x) \in \mathbb {R}^+ \times \mathbb {R}^d, \end{aligned}$$
where \(d\ge 2, \frac{d}{2d-1} \le s <1\) and \(\frac{4s}{d}<\alpha <\frac{4s}{d-2s}\). By means of the localized virial estimate, we prove that the ground-state standing wave is strongly unstable by blowup. This result is a complement to a recent result of Peng–Shi (J Math Phys 59:011508, 2018) where the stability and instability of standing waves were studied in the \(L^2\)-subcritical and \(L^2\)-critical cases.


Fractional nonlinear Schrödinger equation Standing wave Instability Localized virial estimate Blow-up 

Mathematics Subject Classification

35B44 35Q55 



The author would like to express his deep gratitude to his wife—Uyen Cong for her encouragement and support. He would like to thank his supervisor Prof. Jean-Marc Bouclet for the kind guidance and constant encouragement. He also would like to thank the reviewer for his/her helpful comments and suggestions.


  1. 1.
    Ardilla, A.H.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal. 155, 52–64 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bhattarai, S.: On fractional Schrödinger systems of Choquard type. J. Differ. Equ. 263(6), 3197–3229 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blowup for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cho, Y., Fall, M.M., Hajaiej, H., Markowich, P.A., Trabelsi, S.: Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity. Anal. Appl. (Singap.) 15(5), 699–729 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cho, Y., Hajaiej, H., Hwang, G., Ozawa, T.: On the orbital stability of fractional Schrödinger equation. Commun. Pure Appl. Anal. 13(3), 1282–1367 (2014)zbMATHGoogle Scholar
  6. 6.
    Dinh, V.D.: Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces. Int. J. Appl. Math. 31(4), 483–525 (2018)CrossRefGoogle Scholar
  7. 7.
    Dinh, V.D.: On blowup solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Commun. Pure Appl. Anal. 18(2), 689–708 (2019)CrossRefGoogle Scholar
  8. 8.
    Dinh, V.D.: On instability of radial standing waves for the nonlinear Schrödinger equation with inverse-square potential. arXiv:1806.01068 (2018)
  9. 9.
    Feng, B., Zhang, H.: Stability of standing waves for the fractional Schrödinger-Hartree equation. J. Math. Anal. Appl. 460(1), 352–364 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feng, B., Zhang, H.: Stability of standing waves for the fractional Schrödinger–Choquard equation. Comput. Math. Appl. 75, 2499–2507 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Frank, R.L., Lenzmann, E.: Uniqueness of nonlinear gound states for fractional Laplacians in \({\mathbb{R}}\). Acta Math. 210(2), 261–318 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69, 1671–1725 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fröhlich, J., Jonsson, G., Lenzmann, E.: Boson stars as solitary waves. Commun. Math. Phys. 274(1), 1–30 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guo, B., Huang, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equations. J. Math. Phys. 53, 083702 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ionescu, A.D., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J. Funct. Anal. 266, 139–176 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hong, Y., Sire, Y.: On fractional Schrödinger equations in Sobolev spaces. Commun. Pure Appl. Anal. 14, 2265–2282 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hmidi, T., Keraani, S.: Blowup theory for the critical nonlinear Schrödinger equation revisited. Int. Math. Res. Not. 46, 2815–2828 (2005)CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317(3), 563–591 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–304 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Laskin, N.: Fractional Schrödinger equations. Phys. Rev. E 66, 056108 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I, II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145, 223–283 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Peng, C., Shi, Q.: Stability of standing waves for the fractional nonlinear Schrödinger equation. J. Math. Phys. 59, 011508 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shi, Q., Peng, C.: Wellposedness for semirelativistic Schrödinger equation with power-type nonlinearity. Nonlinear Anal. 178, 133–144 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wu, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with Hartree type nonlinearity. J. Math. Anal. Appl. 411(2), 530–542 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, J., Zhu, S.: Stability of standing waves for the nonlinear fractional Schrödinger equation. J. Dyn. Differ. Equ. 29(3), 1017–1030 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhu, S.: Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities. J. Evol. Equ. 17(3), 1003–1021 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhu, S.: On the blow-up solutions for the nonlinear fractional Schrödinger equation. J. Differ. Equ. 261(2), 1506–1531 (2016). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse UMR5219Université Toulouse CNRSToulouse Cedex 9France
  2. 2.Department of MathematicsHCMC University of PedagogyHo Chi MinhVietnam

Personalised recommendations