Analysis of a linear 3D fluid–mesh–shell interaction problem

  • Sunčica ČanićEmail author
  • Marija Galić
  • Matko Ljulj
  • Boris Muha
  • Josip Tambača
  • Yifan Wang


We study a linear fluid–structure interaction problem between an incompressible, viscous 3D fluid flow, a 2D linearly elastic Koiter shell, and an elastic 1D net of curved rods. This problem is motivated by studying fluid–structure interaction between blood flow through coronary arteries treated with metallic mesh-like devices called stents. The flow is assumed to be laminar, modeled by the time-dependent Stokes equations, and the structure displacement is assumed to be small, modeled by a system of linear Koiter shell equations allowing displacement in all three spatial directions. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic coupling conditions describing continuity of velocity and balance of contact forces. The coupling conditions are evaluated along a linearized fluid–structure interface, which coincides with the fixed fluid domain boundary. No smallness on the structure velocity is assumed. We prove the existence of a weak solution to this linear fluid–composite structure interaction problem. This is the first result in the area of fluid–structure interaction that includes a 1D elastic mesh and takes into account structural displacements in all three spatial directions. Numerical simulations based on the finite element discretization of the coupled FSI problem are presented.

Mathematics Subject Classification

74F10 76D 74K25 35D30 76M10 



  1. 1.
    Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107, 2nd edn. Springer, New York (2005)zbMATHGoogle Scholar
  2. 2.
    Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system. Georgian Math. J. 15(3), 403–437 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Avalos, G., Triggiani, R.: Semigroup well-posedness in the energy space of a parabolic–hyperbolic coupled Stokes–Lamé PDE system of fluid–structure interaction. Discrete Contin. Dyn. Syst. S 2(3), 417–447 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Badia, S., Quaini, A., Quarteroni, A.: Modular vs. non-modular preconditioners for fluid–structure systems with large added-mass effect. Comput. Methods Appl. Mech. Eng. 197(49–50), 4216–4232 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bodnár, T., Galdi, G.P., Nečasová, Š. (eds.): Fluid–Structure Interaction and Biomedical Applications. Birkhäuser, Basel (2014)zbMATHGoogle Scholar
  6. 6.
    Bukac, M., Canic, S., Glowinski, R., Tambaca, J., Quaini, A.: Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)MathSciNetGoogle Scholar
  7. 7.
    Bukac, M., Canic, S., Muha, B.: A partitioned scheme for fluid–composite structure interaction problems. J. Comput. Phys. 281, 493–517 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bukač, M., Čanić, S., Muha, B.: A nonlinear fluid–structure interaction problem in compliant arteries treated with vascular stents. Appl. Math. Optim. 73(3), 433–473 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bukač, M., Muha, B.: Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid–structure interaction. SIAM J. Numer. Anal. 54(5), 3032–3061 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bukač, M., Čanić, S., Glowinski, R., Muha, B., Quaini, A.: A modular, operator-splitting scheme for fluid–structure interaction problems with thick structures. Int. J. Numer. Methods Fluids 74(8), 577–604 (2014)MathSciNetGoogle Scholar
  11. 11.
    Butany, J., Carmichael, K., Leong, S.W., Collins, M.J.: Coronary artery stents: identification and evaluation. J. Clin. Pathol. 58(8), 795–804 (2005)Google Scholar
  12. 12.
    Čanić, S., Galović, M., Ljulj, M., Tambača, J.: A dimension-reduction based coupled model of mesh-reinforced shells. SIAM J. Appl. Math. 77(2), 744–769 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Čanić, S., Tambača, J.: Cardiovascular stents as PDE nets: 1D vs. 3D. IMA J. Appl. Math. 77(6), 748–770 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cesmelioglu, A.: Analysis of the coupled Navier–Stokes/Biot problem. J. Math. Anal. Appl. 456(2), 970–991 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chacón Rebollo, T., Girault, V., Murat, F., Pironneau, O.: Analysis of a coupled fluid–structure model with applications to hemodynamics. SIAM J. Numer. Anal. 54(2), 994–1019 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Chueshov, I., Fastovska, T.: On interaction of circular cylindrical shells with a poiseuille type flow. Evolut. Equ. Control Theory 5(4), 605–629 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chueshov, I., Ryzhkova, I.: Well-posedness and long time behavior for a class of fluid–plate interaction models. In: IFIP Conference on System Modeling and Optimization, pp. 328–337. Springer (2011)Google Scholar
  19. 19.
    Chueshov, I., Ryzhkova, I.: On the interaction of an elasticwall with a Poiseuille-type flow. Ukr. Math. J. 65(1), 158–177 (2013)zbMATHGoogle Scholar
  20. 20.
    Ciarlet, P.G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity. Studies in Mathematics and Its Applications, vol. 20. North-Holland Publishing Co., Amsterdam (1988)zbMATHGoogle Scholar
  21. 21.
    Ciarlet, P.G.: Mathematical Elasticity. Volume III: Theory of Shells. Studies in Mathematics and Its Applications, vol. 29. North-Holland Publishing Co., Amsterdam (2000)zbMATHGoogle Scholar
  22. 22.
    Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. III. Justification of Koiter’s shell equations. Arch. Ration. Mech. Anal. 136(2), 191–200 (1996)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. (N.S.) 20(2), 279–318 (1994)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Coutand, D., Shkoller, S.: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179(3), 303–352 (2006)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Desjardins, B., Esteban, M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid–structure interaction problem. Discrete Contin. Dyn. Syst. 9(3), 633–650 (2003)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Fernández, M.A.: Incremental displacement-correction schemes for incompressible fluid-structure interaction. Numer. Math. 123(1), 21–65 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Formaggia, L., Gerbeau, J.F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6–7), 561–582 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Galdi, G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Handbook of Mathematical Fluid Synamics, vol. I, pp. 653–791. North-Holland, Amsterdam (2002)Google Scholar
  30. 30.
    Glowinski, R.: Finite element methods for incompressible viscous flow. In: Handbook of Numerical Analysis, vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)Google Scholar
  31. 31.
    Glowinski, R., Osher, S.J. (eds.): Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham (2016)zbMATHGoogle Scholar
  32. 32.
    Grandmont, C., Hillairet, M.: Existence of global strong solutions to a beam–fluid interaction system. Arch. Ration. Mech. Anal. 220(3), 1283–1333 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Griso, G.: Asymptotic behavior of structures made of curved rods. Anal. Appl. (Singap.) 6(1), 11–22 (2008)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Grubisic, L., Tambaca, J.: Direct solution method for the equilibrium problem for elastic stents. Numer. Linear Algebra Appl. (accepted).
  35. 35.
    Grubišić, L., Iveković, J., Tambača, J., Žugec, B.: Mixed formulation of the one-dimensional equilibrium model for elastic stents. Rad Hrvatske akademije znanosti i umjetnosti: Matematičke znanosti 532(21), 219–240 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Guidoboni, G., Glowinski, R., Cavallini, N., Čanić, S.: Stable loosely-coupled-type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction—a review. Commun. Comput. Phys. 12(2), 337–377 (2012)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness and small data global existence for an interface damped free boundary fluid–structure model. Nonlinearity 27(3), 467–499 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Jurak, M., Tambača, J.: Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci. 9(7), 991–1014 (1999)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Jurak, M., Tambača, J.: Linear curved rod model: general curve. Math. Models Methods Appl. Sci. 11(7), 1237–1252 (2001)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Koiter, W.T.: On the foundations of the linear theory of thin elastic shells. I. Nederl. Akad. Wetensch. Proc. Ser. B. 73, 169–182 (1970)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Koiter, W.T.: On the foundations of the linear theory of thin elastic shells. II. Nederl. Akad. Wetensch. Proc. Ser. B 73, 183–195 (1970)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a Navier–Stokes–Lamé system on a domain with a non-flat boundary. Nonlinearity 24(1), 159–176 (2011)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Lengeler, D., Růžička, M.: Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell. Arch. Ration. Mech. Anal. 211(1), 205–255 (2014)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  46. 46.
    Lukáčová-Medvid’ová, M., Rusnáková, G., Hundertmark-Zaušková, A.: Kinematic splitting algorithm for fluid–structure interaction in hemodynamics. Comput. Methods Appl. Mech. Eng. 265, 83–106 (2013)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid–structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Muha, B., Čanić, S.: A nonlinear, 3D fluid–structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof. Commun. Inf. Syst. 13(3), 357–397 (2013)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Muha, B., Čanić, S.: Existence of a solution to a fluid–multi-layered-structure interaction problem. J. Differ. Equ. 256(2), 658–706 (2014)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Muha, B., Čanić, S.: Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy. Interfaces Free Bound. 17(4), 465–495 (2015)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Muha, B., Čanić, S.: Existence of a weak solution to a fluid–elastic structure interaction problem with the Navier slip boundary condition. J. Differ. Equ. 260(12), 8550–8589 (2016)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Tambača, J., Kosor, M., Čanić, S., Paniagua, D.: Mathematical modeling of vascular stents. SIAM J. Appl. Math. 70(6), 1922–1952 (2010)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Tambača, J., Tutek, Z.: A new linear Naghdi type shell model for shells with little regularity. Appl. Math. Model. 40(23–24), 10549–10562 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA
  2. 2.UC BerkeleyBerkeleyUSA
  3. 3.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations