Advertisement

Symmetry breaking via Morse index for equations and systems of Hénon–Schrödinger type

  • Zhenluo Lou
  • Tobias WethEmail author
  • Zhitao Zhang
Article
  • 16 Downloads

Abstract

We consider the Dirichlet problem for the Hénon–Schrödinger system
$$\begin{aligned} -\Delta u + \kappa _1 u = |x|^{\alpha }\partial _u F(u,v), \qquad -\Delta v + \kappa _2 v = |x|^{\alpha }\partial _v F(u,v) \end{aligned}$$
in the unit ball \(\Omega \subset \mathbb {R}^N, N\ge 2\), where \(\alpha \ge 0\) is a parameter and \(F: \mathbb {R}^2 \rightarrow \mathbb {R}\) is a p-homogeneous \(C^2\)-function for some \(p>2\) with \(F(u,v)>0\) for \((u,v) \not = (0,0)\). We show that, as \(\alpha \rightarrow \infty \), the Morse index of nontrivial radial solutions of this problem (positive or sign-changing) tends to infinity. This result is new even for the corresponding scalar Hénon equation and extends a previous result by Moreira dos Santos and Pacella [19] for the case \(N=2\). In particular, the result implies symmetry breaking for ground state solutions, but also for other solutions obtained by an \(\alpha \)-independent variational minimax principle.

Keywords

Symmetry breaking Morse index Hénon–Schrödinger system Ground state solution 

Mathematics Subject Classification

35B06 35J50 35J57 

Notes

Acknowledgements

The authors thank the referees for their careful reading and useful comments and suggestions. Funding was provided by National Natural Science Foundation of China (Grant No. 11331010).

References

  1. 1.
    Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75(2), 67–82 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Amadori, A., Gladiali, F.: On a singular eigenvalue problem and its applications in computing the Morse index of solutions to semilinear PDE’s. arXiv:1805.04321
  3. 3.
    Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational problems. Journal d’Analyse Mathématique 96, 1–18 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berestycki, H., Lin, T., Wei, J., Zhao, C.: On phase-separation models: asymptotics and qualitative properties. Arch. Rational Mech. Anal. 208, 163–200 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonheure, D., dos Santos, E.M., Ramos, M.: Ground state and non-ground state solutions of some strongly coupled elliptic systems. Trans. Am. Math. Soc. 364, 447–491 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonheure, D., dos Santos, E.M., Ramos, M.: Symmetry and symmetry breaking for ground state solutions of some strongly coupled systems. J. Funct. Anal. 264, 62–96 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states, I. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 803–828 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states, II. J. Differ. Equ. 216, 78–108 (2005)CrossRefGoogle Scholar
  9. 9.
    Calanchi, M., Ruf, B.: Radial and non-radial solutions for Hardy–Hénon type elliptic systems. Calc. Var. 38, 111–133 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278, 1–17 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cao, D., Peng, S., Yan, S.: Asymptotic behaviour of ground state solutions for the Hénon equation. IMA J. Appl. Math. 74, 468–480 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Damascelli, L., Pacella, F.: Symmetry results for coorperative elliptic systems via linearization. SIAM J. Math. Anal. 45(3), 1003–1026 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dancer, E.N., Wang, K., Zhang, Z.: Uniform Hölder estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species. J. Differ. Equ. 251, 2737–2769 (2011)CrossRefGoogle Scholar
  14. 14.
    Dancer, E.N., Wang, K., Zhang, Z.: The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 262, 1087–1131 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dancer, E.N., Wang, K., Zhang, Z.: Dynamics of strongly competing systems with many species. Trans. Am. Math. Soc. 364, 961–1005 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hénon, M.: Numerical experiments on the stability of spherical stellar systems. Astron. Astrophys. 24, 229238 (1973)Google Scholar
  18. 18.
    Kübler, J., Weth, T.: Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. arXiv:1901.00453
  19. 19.
    Moreira dos Santos, E., Pacella, F.: Morse index of radial nodal solutions of Hénon type equations in dimension two. Commun. Contemp. Math. 19(3) 1650042, 16 pp (2017)Google Scholar
  20. 20.
    Ni, W.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31, 801–807 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pacella, F., Weth, T.: Symmetry of solutions to semilinear elliptic equations via Morse index. Proc. Am. Math. Soc. 135, 1753–1762 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Polacik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Smets, D., Willem, M.: Partial symmetry and asymptotic behaviour for some elliptic variational problems. Calc. Var. 18, 57–75 (2003)CrossRefGoogle Scholar
  24. 24.
    Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Soave, N., Tavares, H.: New existence and symmetry results for least energy positive solutions of Schrodinger systems with mixed competition and cooperation terms. J. Differ. Equ. 261, 505–537 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tavares, H., Weth, T.: Existence and symmetry results for competing variational systems. NoDEA Nonlinear Differ. Equ. Appl. 20, 715–740 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Troy, W.C.: Symmetry properties in systems of semilinear elliptic equations. J. Differ. Equ. 42, 400–413 (1981)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Terracini, S., Verzini, G.: Multipulse phases in K-mixtures of Bose–Einstein condensates. Arch. Rational Mech. Anal. 194, 717–741 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Van Schaftingen, J., Willem, M.: Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. (JEMS) 10, 439–456 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsHenan University of Science TechnologyLuoyangPeople’s Republic of China
  2. 2.Institut für Mathematik, Goethe-Universität FrankfurtFrankfurt a.MGermany
  3. 3.Academy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations