Advertisement

Global strong solution to the Cauchy problem of 1D compressible MHD equations with large initial data and vacuum

  • Yulin Ye
  • Zilai LiEmail author
Article
  • 10 Downloads

Abstract

In this paper, the Cauchy problem to the 1D compressible magnetohydrodynamics equations is considered. We establish the global existence and uniqueness of strong solution when the viscosity coefficient is assumed to be constant or density dependent. The analysis is based on some new mathematical techniques and the weighed Caffarelli–Kohn–Nirenberg inequality to get the \(L^p(1\le p<\infty )\) norm of the velocity u. Note that the initial data can be arbitrarily large and permit vacuum.

Keywords

Compressible MHD equation Density-dependent viscosity Global strong solution Vacuum 

Mathematics Subject Classification

35Q35 (76W05, 35D35, 35A01) 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their helpful suggestions and kindly comments. Ye is supported by the NSFC (No. 11701145). Li is supported by the NSFC (Nos. 11601128, 11671319), Fund of HPU ( Nos. B2016-57, 2016XQG-12) and the Key Research Project of University in Henan Province (No.16A110015).

References

  1. 1.
    Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Catrina, F., Wang, Z.Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, G.Q., Wang, D.H.: Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Differ. Equ. 182, 344–376 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dou, C.S., Jiang, S., Ju, Q.C.: Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary. Z. Angew. Math. Phys. 64, 1661–1678 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fan, J.S., Huang, S.X., Li, F.C.: Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinet. Relat. Models 10, 1035–1053 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fan, J.S., Hu, Y.X.: Global strong solutions to the 1-D compressible magnetohydrodynamic equations with zero resistivity. J. Math. Phys. 56, 023101, 13 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fan, J.S., Jiang, S., Nakamura, G.: Vanishing shear viscosity limit in the magnetohydrodynamic equations. Commun. Math. Phys. 270, 691–708 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fan, J.S., Yu, W.H.: Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal. Real World Appl. 10, 392–409 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gagliardo, E.: Ulteriori propriet di alcune classi di funzioni in più vari-abili. Ric. Mat. 8, 24–51 (1959)zbMATHGoogle Scholar
  10. 10.
    Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hong, G.Y., Hou, X.F., Peng, H.Y., Zhu, C.J.: Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum. SIAM J. Math. Anal. 49, 2409–2441 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hu, X.P., Wang, D.H.: Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J. Math. Anal. 41, 1272–1294 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hu, X.P., Wang, D.H.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jiang, S., Ju, Q.C., Li, F.C.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297, 371–400 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jiang, S., Ju, Q.C., Li, F.C., Xin, Z.P.: Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data. Adv. Math. 259, 384–420 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jiang, S., Zhang, J.W.: On the non-resistive limit and the magnetic boundary-layer for one-dimensional compressible magnetohydrodynamics. Nonlinearity 30, 3587–3612 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiu, Q.S., Li, M.J., Ye, Y.L.: Global classical solution of the Cauchy problem to 1D compressible Navier–Stokes equations with large initial data. J. Differ. Equ. 257, 311–350 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jiu, Q.S., Wang, Y., Xin, Z.P.: Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces. J. Differ. Equ. 255, 351–404 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, PhD thesis, Kyoto University (1983)Google Scholar
  20. 20.
    Li, J., Liang, Z.L.: On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum. J. Math. Pures Appl. 102, 640–671 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Li, H.L., Xu, X.Y., Zhang, J.W.: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J. Math. Anal. 45, 1356–1387 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Luo, Z.: Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum. Commun. Math. Sci. 10, 527–554 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lv, B.Q., Shi, X.D., Xu, X.Y.: Global existence and large-time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum. Indiana Univ. Math. J. 65, 925–975 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mei, Y.: Global classical solutions to the 2D compressible MHD equations with large data and vacuum. J. Differ. Equ. 258, 3304–3359 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mei, Y.: Corrigendum to “Global classical solutions to the 2D compressible MHD equations with large data and vacuum” [MR3317636]. J. Differ. Equ. 258, 3360–3362 (2015)CrossRefGoogle Scholar
  26. 26.
    Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa 13, 115–162 (1959)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Suen, A.: Global solutions of the equations of 3D compressible magnetohydrodynamics with zero resistivity. arXiv:1202.4081v1
  28. 28.
    Vaigant, V.A., Kazhikhov, A.V.: On the existence of global solutions of two-dimensional Navier–Stokes equations of a compressible viscous fluid. Sib. Mat. Z. 36, 1283–1316 (1995). ii; translation in Sib. Math. J. 36 (1995) 1108–1141 (Russian) Google Scholar
  29. 29.
    Vol’pert, A.I., Hudjaev, S.I.: The Cauchy problem for composite systems of nonlinear differential equations. Mat. Sb. 87(129), 504–528 (1972). (Russian) MathSciNetGoogle Scholar
  30. 30.
    Yang, Y.F., Gu, X.H., Dou, C.S.: Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows. Nonlinear Anal. 95, 23–37 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ye, Y.L., Jiu, Q.S., Dou, C.S.: Local well-posedness to the Cauchy problem of the 3-D compressible Navier–Stokes equations with density-dependent viscosity. Acta Math. Sci. Ser. B (Engl. Ed.) 34, 851–871 (2014)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Yu, H.B.: Global classical large solutions with vacuum to 1D compressible MHD with zero resistivity. Acta Appl. Math. 128, 193–209 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, J.W., Jiang, S., Xie, F.: Global weak solutions of an initial boundary value problem for screw pinches in plasma physics. Math. Models Methods Appl. Sci. 19, 833–875 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, J.W., Zhao, J.N.: Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics. Commun. Math. Sci. 8, 835–850 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, J.W., Zhao, X.K.: On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations. J. Math. Phys. 58, 031504, 17 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsHenan UniversityKaifengPeople’s Republic of China
  2. 2.School of Mathematics and Information ScienceHenan Polytechnic UniversityJiaozuoPeople’s Republic of China

Personalised recommendations