The yield effect in viscoplastic materials. A mathematical model

  • Mauro FabrizioEmail author
  • Massimo Pecoraro


We propose a phase field system that describes an elastic–plastic transition in which we observe a performance force linked to a stress that has a permanent deformation. This yield behavior is described by a nonlinear fractional model, and its thermodynamic compatibility is demonstrated. Finally, some simulations are presented describing the phase diagram of deformation and deformation cycles.

Mathematics Subject Classification



Compliance with ethical standards

Conflicts of interest

Finally, the authors declare that they have no conflict of interest on the subject discussed in this manuscript.


  1. 1.
    Argon, A.S.: Constitutive Equations in Plasticity. MIT Press, Cambridge (1975)Google Scholar
  2. 2.
    Avallone, E.A., Baumeister, T., Sadegh, A.M.: Mark’s Standard Handbook for Mechanical Engineers, 8th edn. McGraw-Hill, New York (1996). ISBN: 0-07-004997-1Google Scholar
  3. 3.
    Benedetti, A., Deseri, L.: On a viscoplastic Shanley-like model under constant load. Int. J. Solids Struct. 36, 5207–5232 (1999)CrossRefGoogle Scholar
  4. 4.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, part II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)CrossRefGoogle Scholar
  5. 5.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)Google Scholar
  6. 6.
    Caputo, M., Fabrizio, M.: Damage and fatigue described by a fractional derivative model. J. Comput. Phys. 293, 400–408 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caputo, M., Fabrizio, M.: 3D memory constitutive equations for plastic media. J. Eng. Mech. (2016).
  8. 8.
    Caputo, M., Fabrizio, M.: Applications of new time and space fractional derivatives with exponential kernel. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)CrossRefGoogle Scholar
  9. 9.
    Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)CrossRefGoogle Scholar
  10. 10.
    Czarnota, C., Kowalczyk-Gajewska, K., Salahouelhadj, A., Martiny, M., Mercier, S.: Modeling of the cyclic behavior of elastic–viscoplastic composites by the additive tangent Mori Tanaka approach and validation by finite element calculations. Int. J. Solids Struct. 56, 96–117 (2015)CrossRefGoogle Scholar
  11. 11.
    Deseri, L., Di Paola, M., Zingales, M.: Free energy and states of fractional-orderhereditarines. Int. J. Solids Struct. 51, 3156–3167 (2014)CrossRefGoogle Scholar
  12. 12.
    Deseri, L., Mares, R.: A class of viscoelastoplastic constitutive models based on the maximum dissipation principle. Mech. Mater. 32, 389–403 (2000)CrossRefGoogle Scholar
  13. 13.
    Di Paola, M., Zingales, M.: Exact mechanical models of fractional hereditary materials. J. Rheol. 56, 983–1004 (2012)CrossRefGoogle Scholar
  14. 14.
    Fabrizio, M.: Plasticity, internal structures and phase field models. Mech. Res. Commun. 43, 29–33 (2012)CrossRefGoogle Scholar
  15. 15.
    Graffi, D.: Problemi non lineari nella teoria del campo elettromagnetico. Atti Accad Naz. Modena Serie VI, IX (1967)Google Scholar
  16. 16.
    Graffi, D.: On the fading memory. Appl. Anal. 15, 17–29 (1983)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Levrero, F., Margetts, L., Sales, E., Xie, S., Manda, K., Pankaj, P.: Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach. J. Mech. Behav. Biomed. Mater. 61, 384–396 (2016)CrossRefGoogle Scholar
  18. 18.
    Ross, C.: Mechanics of Solids. Albion/Horwood Pub. (1999). ISBN: 978-1-898563-67-9Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly
  2. 2.Università di SalernoFiscianoItaly

Personalised recommendations