Advertisement

Large time behavior of strong solutions to the 1D non-resistive full compressible MHD system with large initial data

  • Xin Si
  • Xiaokui Zhao
Article
  • 30 Downloads

Abstract

The Cauchy and initial-boundary value problems for one-dimensional compressible magnetohydrodynamics (MHD) system with non-resistive are studied in this article. Global-in-time, strong solutions to this system are shown to exist uniquely and be asymptotically stable as the time tends to infinity for large initial data. The main difficulties lie in the uniform-in-time estimate of first-order derivative of magnetic and the estimates of positive lower and upper uniform-in-time bounds of the density and temperature. This is a development of Zhang and Zhao (J Math Phys 58:031504, 2017).

Keywords

Magnetohydrodynamics (MHD) Non-resistive Large time behavior Large initial data 

Mathematics Subject Classification

35Q35 35B45 35Q60 76N10 76X05 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments and helpful suggestions that have contributed to the final version of the paper.

References

  1. 1.
    Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942)CrossRefGoogle Scholar
  2. 2.
    Amosov, A.A., Zlotnik, A.A.: A difference scheme on a non-uniform mesh for the equations of one-dimensional magnetic gas dynamics. U.S.S.R. Comput. Math. Math. Phys. 29(2), 129–139 (1990)CrossRefGoogle Scholar
  3. 3.
    Bian, D., Yuan, B.: Local well-posedness in critical spaces for the compressible MHD equations. Appl. Anal. 95, 239–269 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bittencourt, J.A.: Fundamentals of Plasma Physics, 3rd edn. Springer, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Boyd, T.J.M., Sanderson, J.J.: The Physics of Plasmas. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  6. 6.
    Cabannes, H.: Theoretical Magnetofluiddynamics. Academic Press, New York (1970)Google Scholar
  7. 7.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, Oxford (1961)zbMATHGoogle Scholar
  8. 8.
    Chemin, J.Y., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Local existence for the non-resistive MHD equations in Besov spaces. Adv. Math. 286, 1–31 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI, ISBN: 978-0-8218-4974-3, 2010, p. xxii+749Google Scholar
  10. 10.
    Fefferman, C.L., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal. 267, 1035–1056 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fefferman, C.L., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Local existence for the non-resistive MHD equations in nearly optimal Sobolev spaces. Arch. Ration. Mech. Anal. 223, 677–691 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Freidberg, J.P.: Ideal Magneto-hydrodynamic Theory of Magnetic Fusion Systems. Rev. Modern Physics Vol. 54, No 3, The American Physical Society, (1982)Google Scholar
  13. 13.
    Gunderson, R.M.: Linearized Analysis of One-Dimensional Magnetohydrodynamic Flows. Springer Tracts in Natural Philosophy, Vol. 1. Springer, Berlin (1964)Google Scholar
  14. 14.
    Iskenderova, D.A.: An initial-boundary value problem for magnetogasdynamic equations with degenerate density. Differ. Equ. 36, 847–856 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jiang, S.: Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain. Commun. Math. Phys. 178, 339–374 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jiang, S.: Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains. Commun. Math. Phys. 200(1), 181–193 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, S.: Remarks on the asymptotic behaviour of solutions to the compressible Navier–Stokes equations in the half-line. Proc. R. Soc. Edinburgh Sect. A 132, 627–638 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jiang, S., Zhang, J.: On the non-resistive limit and the magnetic boundary-layer for one-dimensional compressible magnetohydrodynamics. Nonlinearity 30, 3587–3612 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kazhikhov, A.V.: A priori estimates for the solutions of equations of magneticgasdynamics. Boundary value problems for equations of mathematical physics, Krasnoyarsk (1987). (In Russian) Google Scholar
  20. 20.
    Kazhikhov, A.V.: Cauchy problem for viscous gas equations. Sib. Math. J. 23, 44–49 (1982)CrossRefGoogle Scholar
  21. 21.
    Kazhikhov, A.V., Sh. S. Smagulov, Well-posedness and approximation methods for a model of magnetogasdynamics. Izv. Akad. Nauk. Kazakh. SSR Ser. Fiz.-Mat., 5, 17-19 (1986)Google Scholar
  22. 22.
    Li, H.L., Xu, X.Y., Zhang, J.W.: Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J. Math. Anal. 45, 1356–1387 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, J., Liang, Z.: Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier-Stokes system in unbounded domains with large data. Arch. Ration. Mech. Anal. 220, 1195–1208 (2016). (ISSN: 0003-9527) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lin, F., Zhang, P.: Global small solutions to an MHD-type system: the three-dimensional case. Commun. Pure Appl. Math. 67, 531–580 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lin, F., Zhang, T.: Global small solutions to a complex fluid model in three dimensional. Arch. Ration. Mech. Anal. 216, 905–920 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Butterworth-Heinemann, London (1999)Google Scholar
  27. 27.
    Li, Y., Sun, Y.: Global Weak Solutions and Long Time Behavior for 1D Compressible MHD Equations Without Resistivity, arXiv:1710.08248
  28. 28.
    Lin, F., Xu, L., Zhang, P.: Global small solutions of 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, H., Yang, T., Zhao, H., Zou, Q.: One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data. SIAM J. Math. Anal. 46, 2185–2228 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Si, X., Zhao, X.: An initial boundary value problem for screw pinches in plasma physics with temoerture dependent visicosity coefficients 461, 273–303 (2018)Google Scholar
  33. 33.
    Su, S., Zhao, X.: Global wellposedness of magnetohydrodynamics system with temperature-dependent viscosity. Acta Math. Sci. 38B, 898–914 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wan, L., Wang, T.: Asymptotic behavior for cylindrically symmetric nonbarotropic flows in exterior domains with large data. Nonlinear Anal. Real World Appl. 39, 93–119 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wan, L., Wang, T.: Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients. J. Differ. Equ. 262, 5939–5977 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wang, T., Zhao, H.: One-dimensional compressible heat-conducting gas with temperature-dependent viscosity. Math. Models Methods Appl. Sci. 26, 2237–2275 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wu, J., Wu, Y.: Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion. Adv. Math. 310, 759–888 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Xu, L., Zhang, P.: Global small solutions to three-dimensional incompressible magnetohydrodynamical system. SIAM J. Math. Anal. 47, 26–65 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhang, J., Jiang, S., Xie, F.: Global weak solutions of an initial boundary value problem for screw pinches in plasma physics. Math. Models Methods Appl. Sci. 19, 833–875 (2009)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhang, J., Zhao, X.: On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations. J. Math. Phys. 58, 031504 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Applied MathematicsXiamen University of TechnologyXiamenPeople’s Republic of China
  2. 2.School of Mathematical SciencesXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations