Blow-up solutions to nonlinear Schrödinger system at multiple points

  • Yiming Su
  • Qing GuoEmail author


In this paper, we consider finite-time blow-up solutions to the following N coupled nonlinear Schrödinger system in \(\mathbb {R}^2\):
$$\begin{aligned}i\partial _t\phi _j+\Delta \phi _j+\sum _{k=1}^{N}a_{jk}|\phi _k|^2\phi _j=0, \quad j=1,2,\ldots ,N,\quad (0.1) \end{aligned}$$
where \(N\ge 2\) and the coefficient matrix A satisfies \(a_{jk}=a_{kj}\) and \(a_{jj}>0\) for \(1\le j,k\le N\). We construct finite-time blow-up solutions concentrating at arbitrary K different points with \(K\ge N\).


Schrödinger system Blow-up solution Multiple-point concentration 

Mathematics Subject Classification

35Q55 37K40 



The authors would like to express their gratitude to the referees for useful comments. This work was supported by the National Natural Science Foundation of China (Nos. 11601482, 11301564, 11771469) and the Zhejiang Provincial NSFC (No. LQ15A010006).


  1. 1.
    Agrawal, G.: Nonlinear Fiber Optics, Optics and Photonics. Academic Press, New York (2007)Google Scholar
  2. 2.
    Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342, 453–458 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartsch, T., Wang, Z.: Note on ground states of nonlinear Schrödinger systems. J. PDEs 19, 200–207 (2006)zbMATHGoogle Scholar
  4. 4.
    Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences, New York (2003)Google Scholar
  5. 5.
    Colin, M., Colin, T., Ohta, M.: Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2211–2226 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Esry, B., Greene, C.H., Burke Jr., J.P., Bohn, J.L.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)CrossRefGoogle Scholar
  7. 7.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)CrossRefGoogle Scholar
  8. 8.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973)CrossRefGoogle Scholar
  9. 9.
    Ianni, I., Coz, S.Le: Multi-speed solitary wave solutions for nonlinear Schrödinger systems. J. Lond. Math. Soc. 89(2), 623–639 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Krieger, J., Lenzmann, E., Raphaël, P.: Nondispersive solutions to the \(L^2\)-critical halfwave equation. Arch. Rational Mech. Anal. 210, 61–129 (2013)CrossRefGoogle Scholar
  11. 11.
    Lin, T., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n\), \(n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Liu, Z., Chang, J.: Existence and uniqueness of positive solutions of nonlinear Schödinger equations. Proc. R. Soc. Lond. Ser. 145A, 365–390 (2015)zbMATHGoogle Scholar
  13. 13.
    Liu, Z., Wang, Z.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10, 175–193 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liü, Z., Liu, Z.: \(L^2\)-concentration of blow-up solutions for two-coupled nonlinear Schrödinger equations. J. Math. Anal. Appl. 380, 531–539 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Maia, L.A., Montefusco, E., Pellacci, B.: Orbital stability property for coupled nonlinear Schrödinger equaions. Adv. Nonlinear Stud. 10, 681–705 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. J. Exp. Theor. Phys. 38, 24–253 (1974)Google Scholar
  17. 17.
    Merle, F.: Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Commun. Math. Phys. 129(2), 223–240 (1990)CrossRefGoogle Scholar
  18. 18.
    Montefusco, E., Pellacci, B., Squassina, M.: Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Commun. Pure Appl. Anal. 9, 867–884 (2010)Google Scholar
  19. 19.
    Nguyen, N., Tian, R., Deconinck, B., Sheils, N.: Global existence for a coupled system of Schrödinger equations with power-type nonlinearities. J. Math. Phys. 54, 011503 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Raphaël, P., Schweyer, R.: Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow. Commun. Pure Appl. Math. 66(3), 414–480 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Am. Math. Soc. 24(2), 471–546 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schweyer, R.: Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal. 263(12), 3922–3983 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations. Commun. Math. Phys. 271, 199–221 (2007)CrossRefGoogle Scholar
  24. 24.
    Tang, X., Zhang, J.: On the blowup phenomenon for N-coupled focusing Schrödinger system in \({\mathbb{R}}^d\) (\(d\ge 3\)). Acta Math. Sin. Engl. Ser. 30(7), 1161–1179 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Terracini, S., Verzini, G.: Multipulse phases in k-mixtures of Bose–Einstein condensates. Arch. Rat. Mech. Anal. 194, 717–741 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rat. Mech. Anal. 190, 83–106 (2008)CrossRefGoogle Scholar
  27. 27.
    Wei, J., Yao, W.: Uniqueness of Positive solutions to some coupled nonlinear Schödinger equations. Commun. Pure Appl. Anal. 11, 1003–1011 (2012)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Xianfa, S.: Sharp thresholds of global exsitence and blowup for a system of Schrödinger equations with combined power-type nonlinearities. J. Math. Phys. 51, 033509 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yiming, S.: Uniqueness of minimal blow-up solutions to nonlinear Schrödinger system. Nonlinear Anal. 155, 186–197 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Sov. Phys. J. Appl. Mech. Tech. Phys. 4, 190–194 (1968)Google Scholar
  31. 31.
    Zakharov, V.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of ScienceZhejiang University of TechnologyHangzhouPeople’s Republic of China
  2. 2.College of ScienceMinzu University of ChinaBeijingPeople’s Republic of China

Personalised recommendations