Robust numerical schemes for Two-Fluid Ten-Moment plasma flow equations

  • Asha Kumari Meena
  • Harish Kumar


Two-Fluid Ten-Moment plasma flow equations are a Two-Fluid (ions and electrons)-based description of the plasma in which fluid is modeled by Ten-Moment Gaussian closure equations. This results in a tensorial description of the pressure and hence allows anisotropic effects in the plasmas which are important in several applications. In addition, this model also allows non-quasineutral effects. The key contribution of this article is the design of robust finite volume numerical schemes for this model. This includes a positivity preserving HLLC solver for three-dimensional Ten-Moment equations and a positivity preserving reconstruction process. In addition, to overcome time restriction imposed by stiff source terms, we design an implicit source discretization which results in an inversion of a local linear system (in each cell) at each time step. Numerical results are presented to demonstrate robustness and accuracy of the proposed schemes.


Hyperbolic PDEs with stiff source terms Finite volume methods Ten-Moment equations 

Mathematics Subject Classification

65M08 65M12 35L60 



H. Kumar has been funded in part by SERB, DST Grant with file No. YSS/2015/001663.


  1. 1.
    Abgrall, R., Kumar, H.: Robust finite volume schemes for Two-Fluid plasma equations. J. Sci. Comput. 60, 584–611 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berthon, C.: Stability of the MUSCL schemes for the Euler equations. Commun. Math. Sci. 3(2), 133–157 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for HLLC Riemann solver. SIAM J. Sci. Comput. 18(6), 1553–1570 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berthon, C.: Numerical approximations of the 10-moment Gaussian-closure. Math. Comput. 75(256), 1809–1831 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berthon, C., Dubroca, B., Sangam, A.: An entropy preserving relaxation scheme for the Ten-Moments equations with source terms. Commun. Math. Sci. 13(8), 2119–2154 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources. Frontiers in Mathematics Series, Birkhauser (2004)CrossRefGoogle Scholar
  7. 7.
    Coquel, F., Marmignon, C.: Numerical methods for weakly ionized gas. Astrophys. Space Sci. 260(1–2), 15–27 (1998)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dubroca, B., Tchong, M., Charrier, P., Tikhonchuk, V.T., Morreeuw, J.P.: Magnetic field generation in plasmas due to anisotropic laser heating. Phys. Plasmas 11, 3830–3839 (2004)CrossRefGoogle Scholar
  9. 9.
    Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, 118. Springer, New York (1996)CrossRefGoogle Scholar
  10. 10.
    Goedbloed, J.P., Poedts, S.: Principles of Magnetohydrodynamics. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  11. 11.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guisset, S., Brull, S., Dubroca, B., d’Humières, E., Karpov, S., Potapenko, I.: Asymptotic-preserving scheme for the M1-maxwell system in the quasi-neutral regime. Commun. Comput. Phys. 19(2), 301–328 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hakim, A.H.: Extended MHD modelling with Ten-Moment equations. J. Fusion Energy 27, 36–43 (2008)CrossRefGoogle Scholar
  14. 14.
    Hakim, A.H., Loverich, J., Shumlak, U.: A high resolution wave propagation scheme for ideal Two-Fluid plasma equations. J. Comput. Phys. 219, 418–442 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Harten, A., Lax, P.D., Leer, B.V.: On upstream differencing and Godunov-type schemes for hyperbolic conservation Laws. SIAM Rev. 25(1), 35–61 (1983)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Johnson, E.A.: Gaussian-moment relaxation closures for verifiable numerical simulation of fast magnetic reconnection in plasma. Ph.D. thesis, University of Wisconsin-Madison (2011)Google Scholar
  17. 17.
    Kumar, H., Mishra, S.: Entropy stable numerical schemes for Two-Fluid plasma equations. J. Sci. Comput. 52, 401–425 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2003)Google Scholar
  19. 19.
    Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Levermore, C.D., Morokoff, W.J.: The Gaussian moment closure for gas dynamics. SIAM J. Appl. Math. 59(1), 72–96 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Meena, A.K., Kumar, H.: Robust MUSCL schemes for Ten-Moment Gaussian closure equations with source terms. Int. J. Finite Vol. 13, 1–28 (2017)MathSciNetGoogle Scholar
  22. 22.
    Meena, A.K., Kumar, H., Chandrashekar, P.: Positivity-preserving high-order discontinuous Galerkin schemes for Ten-Moment Gaussian closure equations. J. Comput. Phys. 337, 370–395 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Meena, A.K., Kumar, H.: A Well-balanced scheme for Ten-Moment Gaussian closure equations with source term. Z. Angew. Math. Phys. 69, 8 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Morreeuw, P., Sangam, A., Dubroca, B., Charrier, P., Tikhonchuk, V.T.: Electron temperature anisotropy modelling and its effect on anisotropy-magnetic field coupling in an underdense laser heated plasma. J. Phys. IV 133, 295–300 (2006)Google Scholar
  25. 25.
    Munz, C.D., Omnes, P., Schneider, R., Sonnendrucker, E., Voß, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sangam, A.: An HLLC scheme for Ten-Moments approximation coupled with magnetic field. Int. J. Comput. Sci. Math. 2(1/2), 73–109 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sangam, A., Morreeuw, J.P., Tikhonchuk, V.T.: Anisotropic instability in a laser heated plasma. Phys. Plasmas 14, 053111-1–053111-8 (2007)Google Scholar
  28. 28.
    Sen, C., Kumar, H.: Entropy stable schemes for Ten-Moment Gaussian closure equations. J. Sci. Comput. 75(2), 1128–1155 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shu, C.W.: TVD time discretizations. SIAM J. Math. Anal. 9(6), 1073–1084 (1988)zbMATHGoogle Scholar
  30. 30.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluids Dynamics, A Practical Introduction, Third edn. Springer, Berlin (2009)CrossRefGoogle Scholar
  31. 31.
    Waagan, K.: A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics. J. Comput. Phys. 228, 8609–8626 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TIFR Centre for Applicable MathematicsIIT DelhiBengaluruIndia
  2. 2.Department of MathematicsIIT DelhiNew-DelhiIndia

Personalised recommendations