Advertisement

A model for bone mechanics and remodeling including cell populations dynamics

  • Alessio Ciro Rapisarda
  • Alessandro Della Corte
  • Rafał Drobnicki
  • Fabio Di CosmoEmail author
  • Luigi Rosa
Article
  • 32 Downloads

Abstract

In this paper, we propose a model for the description of bone mechanics and bone remodeling processes, including bone cell populations dynamics. The latter, described by a system of ODEs, influences the values for the elastic parameters used in the mechanical model, which in turn determines the “stimulus” function affecting the behavior of the cells. Numerical simulations concerning the behavior of the bone under external loads, as well as simple fracture healing processes are presented. The model can reproduce the qualitative behavior of bone tissue remodeling and mechanical response.

Keywords

Bone tissue Bone remodeling Cell populations dynamics Numerical simulations of bone mechanics 

Mathematics Subject Classification

74F99 74B99 

Notes

References

  1. 1.
    Abali, B.E., Müller, W.H., Dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87, 1–16 (2017)CrossRefGoogle Scholar
  2. 2.
    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Altenbach, H., Eremeyev, V.: Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 88(5), 332–341 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Altenbach, H., Eremeyev, V.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Complex Syst. 3(3), 273–283 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ambrosi, D., Ateshian, G.A., Arruda, E.M., Cowin, S.C., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59(4), 863–883 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Andreaus, U., Giorgio, I., Lekszycki, T.: A 2D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik 13, 7 (2013)zbMATHGoogle Scholar
  8. 8.
    Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik 66(1), 209–237 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Berlin (2017)CrossRefGoogle Scholar
  11. 11.
    Bednarczyk, E., Lekszycki, T.: A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4), 94 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chatzigeorgiou, G., Javili, A., Steinmann, P.: Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math. Mech. Solids 19(2), 193–211 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Clinton, T., Lanyon, L.E.: Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66, 397–402 (1984)CrossRefGoogle Scholar
  16. 16.
    Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dallas, S.L., Bonewald, L.F.: Dynamics of the transition from osteoblast to osteocyte. Ann. N. Y. Acad. Sci. 1192(1), 437–443 (2010)CrossRefGoogle Scholar
  18. 18.
    D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Della Corte, A.: Modeling synthesis and resorption phenomena in bones by means of mixture models enhanced with computational population dynamics. Part 2: models of bone cells population dynamics. In: France–Italy Workshop Bone Biomechanics: Multiscale and Multiphysical Aspects, Giuliano di Roma, Italy, 26–28 September (2017)Google Scholar
  20. 20.
    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dell’Isola, F, Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society, vol. 472, p. 20150790. The Royal Society, London (2016)Google Scholar
  23. 23.
    Dell’Isola F, Seppecher P, et al (2018) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn.  https://doi.org/10.1007/s00161-018-0689-8
  24. 24.
    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 1–32 (2018)  https://doi.org/10.1007/s00161-018-0668-0
  26. 26.
    George, D., Allena, R., Remond, Y.: Cell nutriments and motility for mechanobiological bone remodeling in the context of orthodontic periodontal ligament deformation. J. Cell. Immunother. 4(1), 26–29 (2018)CrossRefGoogle Scholar
  27. 27.
    Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)CrossRefGoogle Scholar
  28. 28.
    Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)CrossRefGoogle Scholar
  29. 29.
    Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)CrossRefGoogle Scholar
  30. 30.
    Goda, I., Assidi, M., Ganghoffer, J.F.: Cosserat 3D anisotropic models of trabecular bone from the homogenisation of the trabecular structure. Comput. Methods Biomech. Biomed. Eng. 15(sup1), 288–290 (2012)CrossRefGoogle Scholar
  31. 31.
    Graham, J.M., Ayati, B.P., Holstein, S.A., Martin, J.A.: The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8(5), e63884 (2013)CrossRefGoogle Scholar
  32. 32.
    Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local \(\bar{B}\) formulation for isogeometric \(k\)irchhoff-\(l\)ove shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Greve, R., Placidi, L., Seddik, H.: A continuum-mechanical model for the flow of anisotropic polar ice. Contin. Mech. Thermodyn. 22, 221–237 (2010)CrossRefGoogle Scholar
  34. 34.
    Komarova, S.V., Smith, R.J., Dixon, S.J., Sims, S.M., Wahl, L.M.: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33(2), 206–215 (2003)CrossRefGoogle Scholar
  35. 35.
    Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22(10), 1997–2010 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Luongo, A., D’Annibale, F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Non-Linear Mech. 55, 128–139 (2013)CrossRefGoogle Scholar
  38. 38.
    Luongo, A., D’Annibale, F., Ferretti, M.: Hard loss of stability of Ziegler’s column with nonlinear damping. Meccanica 51(11), 2647–2663 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027–1047 (2013)Google Scholar
  40. 40.
    Melnik, A.V., Goriely, A.: Dynamic fiber reorientation in a fiber-reinforced hyperelastic material. Math. Mech. Solids 18(6), 634–648 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids, (2015)  https://doi.org/10.1177/1081286515576821
  44. 44.
    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 326, pp. 565–584. The Royal Society, London (1972)Google Scholar
  46. 46.
    Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Placidi, L., Greve, R., Seddik, H., Faria, S.: Continuum-mechanical, anisotropic flow model for polar ice masses, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. 22(3), 221–237 (2010)CrossRefGoogle Scholar
  49. 49.
    Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 56 (2018)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ren, Y., Feng, J.Q.: Osteocytes play a key role in the formation and maintenance of mineralized bone. FASEB J. 31(1–supplement), 7-1 (2017)Google Scholar
  51. 51.
    Robling, A.: Osteocytes orchestrate mechanical signal transduction in bone via WNT. FASEB J. 31(1–supplement), 7-3 (2017)Google Scholar
  52. 52.
    Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech.-A/Solids 69, 179–191 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Spingarn, C., Wagner, D., Remond, Y., George, D.: Theoretical numerical modeling of the oxygen diffusion effects within the periodontal ligament for orthodontic tooth displacement. J. Cell. Immunother. 4, 44 (2018)CrossRefGoogle Scholar
  54. 54.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)CrossRefGoogle Scholar
  56. 56.
    Turco, E., Dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Naples Federico IINaplesItaly
  2. 2.International Research Center for the Mathematics and Mechanics of complex Systems (M&MoCS)University of L’AquilaL’AquilaItaly
  3. 3.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly
  4. 4.Dipartimento di Matematica e Applicazioni Renato CaccioppoliUniversity of Naples Federico IINaplesItaly

Personalised recommendations