Dissipative solution to the Ericksen–Leslie system equipped with the Oseen–Frank energy

  • Robert Lasarzik


We analyze the Ericksen–Leslie system equipped with the Oseen–Frank energy in three space dimensions and introduce the concept of dissipative solutions for this system. It is shown that the expectation of a measure-valued solution, which was recently introduced by the author, is a dissipative solution. The concept of a dissipative solution itself relies on an relative energy inequality and avoids the description by parametrized measures. These solutions exist globally and fulfill the weak–strong uniqueness property. Additionally, we generalize the relative energy inequality for measure-valued as well as dissipative solutions fulfilling different nonhomogeneous Dirichlet boundary conditions and incorporate the influence of a temporarily constant electromagnetic field. Relying on this generalized energy inequality, we investigate the long-time behavior and show that all solutions converge for the large time limit to a certain steady state.


Liquid crystal Ericksen–Leslie equation Dissipative solutions Measure-valued solutions Long-time behavior Relative energy 

Mathematics Subject Classification

35Q35 35K55 35R06 35R45 76A15 



  1. 1.
    Arsénio, D., Saint-Raymond, L.: From the Vlasov–Maxwell–Boltzmann system to incompressible viscous electro-magneto-hydrodynamics. ArXiv e-prints (2016)Google Scholar
  2. 2.
    Becker, R., Feng, X., Prohl, A.: Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46(4), 1704–1731 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cavaterra, C., Rocca, E., Wu, H.: Global weak solution and blow-up criterion of the general Ericksen–Leslie system for nematic liquid crystal flows. J. Differ. Equ. 255(1), 24–57 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Christof, C., Meyer, C., Walther, S., Clason, C.: Optimal control of a non-smooth semilinear elliptic equation. Math. Control Relat. Fields 8(1), 247–276 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70(2), 167–179 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2016)zbMATHGoogle Scholar
  7. 7.
    De Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1974)zbMATHGoogle Scholar
  8. 8.
    Diestel, J., Uhl Jr., J.J.: Vector Measures. American Mathematical Society, Providence (1977)CrossRefGoogle Scholar
  9. 9.
    Edwards, R.E.: Functional Analysis. Theory and Applications. Holt Rinehart and Winston, New York (1965)zbMATHGoogle Scholar
  10. 10.
    Emmrich, E., Klapp, S.H., Lasarzik, R.: Nonstationary models for liquid crystals: a fresh mathematical perspective. J. Non-Newton. Fluid Mech. 259, 32–47 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Emmrich, E., Lasarzik, R.: Existence of weak solutions to the Ericksen–Leslie model for a general class of free energies. Math. Methods Appl. Sci. 41(16), 6492–6518 (2018)CrossRefGoogle Scholar
  12. 12.
    Feireisl, E.: Relative entropies in thermodynamics of complete fluid systems. Discrete Contin. Dyn. Syst. 32(9), 3059–3080 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Feireisl, E.: Relative entropies, dissipative solutions, and singular limits of complete fluid systems. In: Bressan, A., Ancona, F., Marcati, P., Marson, A. (eds.) Hyperbolic Problems: Theory, Numerics, Applications, Volume 8 of AIMS on Applied Mathematics, pp. 11–28. AIMS, Springfield (2014)Google Scholar
  14. 14.
    Feireisl, E., Novotný, A.: Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204(2), 683 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feireisl, E., Rocca, E., Schimperna, G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24(1), 243–257 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Feireisl, E., Rocca, E., Schimperna, G., Zarnescu, A.: On a hyperbolic system arising in liquid crystals modeling. J. Hyperbolic Differ. Equ. 15(1), 15–35 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferential-Gleichungen. Akademie-Verlag, Berlin (1974)zbMATHGoogle Scholar
  18. 18.
    Grunert, K., Holden, H., Raynaud, X.: Global dissipative solutions of the two-component Camassa–Holm system for initial data with nonvanishing asymptotics. Nonlinear Anal. Real World Appl. 17, 203–244 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105(4), 547–570 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hieber, M., Nesensohn, M., Prüss, J., Schade, K.: Dynamics of nematic liquid crystal flows: the quasilinear approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(2), 397–408 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hong, M.-C., Li, J., Xin, Z.: Blow-up criteria of strong solutions to the Ericksen–Leslie system in \(\mathbb{R}^3\). Commun. Part. Differ. Equ. 39(7), 1284–1328 (2014)CrossRefGoogle Scholar
  22. 22.
    Hong, M.-C., Xin, Z.: Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in \(\mathbb{R}^2\). Adv. Math. 231(3–4), 1364–1400 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115(4), 329–365 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4(1), 59–90 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in \({\varvec {W}}^{1,1}\) and BV. Arch. Ration. Mech. Anal. 197(2), 539–598 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lasarzik, R.: Approximation and optimal control of dissipative solutions to the Ericksen–Leslie system. WIAS, Preprint 2535 (2018).
  27. 27.
    Lasarzik, R.: Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy. Nonlinear Anal. 179, 146–183 (2019)CrossRefGoogle Scholar
  28. 28.
    Lasarzik, R.: Weak–strong uniqueness for measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank free energy. J. Math. Anal. Appl. 470(1), 36–90 (2019)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48(5), 501–537 (1995)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lin, F.-H., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2(1), 1–22 (1996)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lin, F.-H., Liu, C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 154(2), 135–156 (2000)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)zbMATHGoogle Scholar
  34. 34.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II. J. Math. Kyoto Univ. 34(2), 391–427, 429–461 (1994)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1. The Clarendon Press, New York (1996)zbMATHGoogle Scholar
  36. 36.
    McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  37. 37.
    Mielke, A.: On evolutionary \(\Gamma \)-convergence for gradient systems. In: Muntean, A., Rademacher, J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Volume 3 of the Lecture Notes in Applied Mathematics and Mechanics, pp. 187–249. Springer, Berlin (2016)CrossRefGoogle Scholar
  38. 38.
    Olmsted, P.D., Goldbart, P.: Theory of the nonequilibrium phase transition for nematic liquid crystals under shear flow. Phys. Rev. A 41, 4578–4581 (1990)CrossRefGoogle Scholar
  39. 39.
    Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus. Volume 4 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin (1997)CrossRefGoogle Scholar
  40. 40.
    Roubíček, T.: Optimality conditions for nonconvex variational problems relaxed in terms of Young measures. Kybernetika 34(3), 335–347 (1998)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  42. 42.
    Roubíček, T., Hoffmann, K.-H.: About the concept of measure-valued solutions to distributed parameter systems. Math. Methods Appl. Sci. 18(9), 671–685 (1995)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Villani, C.: Optimal Transport. Springer, Berlin (2009)CrossRefGoogle Scholar
  44. 44.
    Vorotnikov, D.A.: Dissipative solutions for equations of viscoelastic diffusion in polymers. J. Math. Anal. Appl. 339(2), 876–888 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wang, W., Zhang, P., Zhang, Z.: Well-posedness of the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 210(3), 837–855 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications: III: Variational Methods and Optimization. Springer, New York (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Weierstrass InstituteBerlinGermany

Personalised recommendations