Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

Open Access
Article
  • 44 Downloads

Abstract

The convergence to equilibrium for renormalised solutions to nonlinear reaction–diffusion systems is studied. The considered reaction–diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of \({\mathbb {R}}_+^N\), then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

Keywords

Renormalised solutions Complex balanced reaction networks Reaction–diffusion systems Convergence to equilibrium Entropy method Complex balance equilibria Boundary equilibria 

Mathematics Subject Classification

35B40 35K57 35Q92 80A30 80A32 

Notes

Acknowledgements

Open access funding provided by University of Graz. This work is partially supported by International Research Training Group IGDK 1754 and NAWI Graz. Moreover, the authors would like to acknowledge the referees for the careful reading of the paper and the suggested improvements.

References

  1. 1.
    Ardenson, D.F.: A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71, 1487–1508 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ardenson, D.F.: A short note on the Lyapunov function for complex-balanced chemical reaction networks, online notes. https://www.math.wisc.edu/~anderson/CRNT_Lyapunov.pdf
  3. 3.
    Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26, 43–100 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boltzmann, L.: Gastheorie, Leipzig, J. A. Barth (1896)Google Scholar
  5. 5.
    Boltzmann, L.: Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 95, 153–164 (1887)MATHGoogle Scholar
  6. 6.
    Cañizo, J.A., Desvillettes, L., Fellner, K.: Improved duality estimates and applications to reaction–diffusion equations. Commun. Partial Differ. Equ. 39, 1185–1204 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chipot, M.: Elements of Nonlinear Analysis. Birkhäuser Advanced Texts. Birkhäuser Verlag, Basel (2000)Google Scholar
  8. 8.
    Craciun, G., Nazarov, F., Pantea, C.: Persistence and permanence of mass-action and power-law dynamical systems. SIAM J. Appl. Math. 73, 305–329 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Craciun, G.: Toric Differential Inclusions and a Proof of the Global Attractor Conjecture (2015). arXiv:1501.02860
  10. 10.
    Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Desvillettes, L., Fellner, K.: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations. J. Math. Anal. Appl. 319, 157–176 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion equations: slowly growing a priori bounds. Rev. Mat. Iberoam. 24, 407–431 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Desvillettes, L., Fellner, K.: Exponential convergence to equilibrium for a nonlinear reaction–diffusion systems arising in reversible chemistry. Syst. Model. Optim. IFIP AICT 443, 96–104 (2014)CrossRefMATHGoogle Scholar
  14. 14.
    Desvillettes, L., Fellner, K., Pierre, M., Vovelle, J.: About global existence of quadratic systems of reaction–diffusion. J. Adv. Nonlinear Stud. 7, 491–511 (2007)MATHGoogle Scholar
  15. 15.
    Desvillettes, L., Fellner, K., Tang, B.Q.: Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks. SIAM J. Math. Anal. 49(4), 2666–2709 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Eliaš, J.: Mathematical Model of the Role and Temporal Dynamics of Protein p53 After Drug-Induced DNA Damage. PhD Thesis, Pierre and Marie Curie University (2015)Google Scholar
  17. 17.
    Eliaš, J.: Trend to equilibrium for a reaction-diffusion system modelling reversible enzyme reaction. Bull. Math. Biol. 80(1), 104–129 (2018). arXiv:1610.07172
  18. 18.
    Fellner, K., Laamri, E.-H.: Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems. J. Evol. Equ. 16(3), 681–704 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Feinberg, M.: Lectures on Chemical Reaction Networks. University of Wisconsin-Madison. https://crnt.osu.edu/LecturesOnReactionNetworks (1979)
  20. 20.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors. I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42, 2229–2268 (1987)CrossRefGoogle Scholar
  21. 21.
    Feinberg, M., Horn, F.J.M.: Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29, 775–787 (1974)CrossRefGoogle Scholar
  22. 22.
    Fellner, K., Laamri, E.-H.: Exponential decay towards equilibrium and global classical solutions for nonlinear reaction–diffusion systems. J. Evol. Equ. 16, 681–704 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Fellner, K., Latos, E., Suzuki, T.: Global classical solutions for mass-conserving, (super)-quadratic reaction–diffusion systems in three and higher space dimensions. Discrete Contin. Dyn. Syst. Ser. B. 21(10), 3441–3462 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Fellner, K., Latos, E., Tang, B.Q.: Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(3), 643–673 (2018)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Fellner, K., Prager, W., Tang, B.Q.: The entropy method for reaction–diffusion systems without detailed balance: first order chemical reaction networks. Kinet. Relat. Models 10(4), 1055–1087 (2017)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Fellner, K., Tang, B.Q.: Explicit exponential convergence to equilibrium for mass action reaction–diffusion systems with detailed balance condition. Nonlinear Anal. 159, 145–180 (2017)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Fischer, J.: Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems. Arch. Ration. Mech. Anal. 218, 553–587 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Fischer, J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction–diffusion equations. Nonlinear Anal. 159, 181–207 (2017)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Fontbona, J., Jourdain, B.: A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations. Ann. Probab. 44, 131–170 (2016)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Gröger, K.: Asymptotic behavior of solutions to a class of diffusion–reaction equations. Math. Nachr. 112(1), 19–33 (1983)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Gröger, K.: On the existence of steady states of certain reaction–diffusion systems. Arch. Ration. Mech. Anal. 92(4), 297–306 (1986)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Gröger, K.: Free Energy Estimates and Asymptotic Behaviour of Reaction–Diffusion Processes. Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin (1992)Google Scholar
  33. 33.
    Glitzky, A., Gröger, K., Hünlich, R.: Free energy and dissipation rate for reaction–diffusion processes of electrically charged species. Appl. Anal. 60, 201–217 (1996)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Glitzky, A., Hünlich, R.: Energetic estimates and asymptotics for electro-reaction–diffusion systems. Z. Angew. Math. Mech. 77, 823–832 (1997)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Gopalkrishnan, M.: On the Lyapunov function for complex-balanced mass-action systems. arXiv:1312.3043 (2013)
  36. 36.
    Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attractor conjecture. SIAM J. Appl. Dyn. Syst. 13, 758–797 (2014)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Gentil, I., Zegarlinski, B.: Asymptotic behaviour of a general reversible chemical reaction–diffusion equation. Kinet. Relat. Models 3, 427–444 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Gross, L.: Logarithmic sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Haskovec, J., Hittmeir, S., Markowich, P., Mielke, A.: Decay to equilibrium for energy-reaction–diffusion systems. SIAM J. Math. Anal. 50(1), 1037–1075 (2018)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Horn, F.J.M.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Horn, F.J.M.: The dynamics of open reaction systems. In: SIAM-AMS Proceedings, vol. VIII, pp. 125–137. SIAM, Philadelphia (1974)Google Scholar
  42. 42.
    Horn, F.J.M., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kirane, M.: On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an autocatalytic reversible chemical reaction. Bull. Inst. Math. Acad. Sin. 18(4), 369–377 (1990)MathSciNetMATHGoogle Scholar
  44. 44.
    Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84, 1235–1260 (2005)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Mielke, A., Haskovec, J., Markowich, P.A.: On uniform decay of the entropy for reaction–diffusion systems. J. Dyn. Differ. Equ. 27, 897–928 (2015)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Pantea, C.: On the persistence and global stability of mass-action systems. SIAM J. Math. Anal. 44, 1636–1673 (2012)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Springer, Berlin (1992)MATHGoogle Scholar
  48. 48.
    Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)MATHGoogle Scholar
  49. 49.
    Pierre, M.: Weak solutions and supersolutions in \(L^1\) for reaction–diffusion systems. J. Evol. Equ. 3, 153–168 (2003)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Pierre, M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Pierre, M., Schmitt, D.: Blowup in reaction–diffusion systems with dissipation of mass. SIAM Rev. 42(1), 93–106 (2000)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Pierre, M., Suzuki, T., Zou, R.: Asymptotic behavior of solutions to chemical reaction–diffusion systems. J. Math. Anal. Appl. 450(1), 152–168 (2017)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Quittner, P., Souplet, P.: Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States. Springer, Berlin (2007)MATHGoogle Scholar
  54. 54.
    Rothe, F.: Global Solutions of Reaction–Diffusion Systems. Lecture Notes in Mathematics. Springer, Berlin (1984)Google Scholar
  55. 55.
    Siegel, D., Johnston, M.D.: Linearization of complex balanced reaction systems (2008). https://www.researchgate.net/publication/253758553_Linearization_of_Complex_Balanced_Chemical_Reaction_Systems
  56. 56.
    Siegel, D., MacLean, D.: Global stability of complex balanced mechanisms. J. Math. Chem. 27, 89–110 (2000)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Stat. Phys. 98(5–6), 1279–1309 (2000)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Volpert, A.I.: Differential equations on graphs. Mat. Sb. 88(130), 578–588 (1972) (in Russian). Math. USSR-Sb. 17, 571–582 (1972) (in English) Google Scholar
  59. 59.
    Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatshefte für Chemie 32, 849–906 (1901)CrossRefMATHGoogle Scholar
  60. 60.
    Willett, D.: A linear generalization of Gronwall’s inequality. Proc. Am. Math. Soc. 16, 774–778 (1965)MathSciNetMATHGoogle Scholar
  61. 61.
    Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Zeitschrift für physikalische Chemie 39(1), 257–303 (1902)MATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Mathematics and Scientific ComputingUniversity of GrazGrazAustria

Personalised recommendations