Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems
- 44 Downloads
Abstract
The convergence to equilibrium for renormalised solutions to nonlinear reaction–diffusion systems is studied. The considered reaction–diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of \({\mathbb {R}}_+^N\), then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
Keywords
Renormalised solutions Complex balanced reaction networks Reaction–diffusion systems Convergence to equilibrium Entropy method Complex balance equilibria Boundary equilibriaMathematics Subject Classification
35B40 35K57 35Q92 80A30 80A32Notes
Acknowledgements
Open access funding provided by University of Graz. This work is partially supported by International Research Training Group IGDK 1754 and NAWI Graz. Moreover, the authors would like to acknowledge the referees for the careful reading of the paper and the suggested improvements.
References
- 1.Ardenson, D.F.: A proof of the global attractor conjecture in the single linkage class case. SIAM J. Appl. Math. 71, 1487–1508 (2011)MathSciNetCrossRefGoogle Scholar
- 2.Ardenson, D.F.: A short note on the Lyapunov function for complex-balanced chemical reaction networks, online notes. https://www.math.wisc.edu/~anderson/CRNT_Lyapunov.pdf
- 3.Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26, 43–100 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 4.Boltzmann, L.: Gastheorie, Leipzig, J. A. Barth (1896)Google Scholar
- 5.Boltzmann, L.: Neuer Beweis zweier Sätze über das Wärmegleichgewicht unter mehratomigen Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 95, 153–164 (1887)MATHGoogle Scholar
- 6.Cañizo, J.A., Desvillettes, L., Fellner, K.: Improved duality estimates and applications to reaction–diffusion equations. Commun. Partial Differ. Equ. 39, 1185–1204 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 7.Chipot, M.: Elements of Nonlinear Analysis. Birkhäuser Advanced Texts. Birkhäuser Verlag, Basel (2000)Google Scholar
- 8.Craciun, G., Nazarov, F., Pantea, C.: Persistence and permanence of mass-action and power-law dynamical systems. SIAM J. Appl. Math. 73, 305–329 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 9.Craciun, G.: Toric Differential Inclusions and a Proof of the Global Attractor Conjecture (2015). arXiv:1501.02860
- 10.Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 11.Desvillettes, L., Fellner, K.: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations. J. Math. Anal. Appl. 319, 157–176 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 12.Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion equations: slowly growing a priori bounds. Rev. Mat. Iberoam. 24, 407–431 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 13.Desvillettes, L., Fellner, K.: Exponential convergence to equilibrium for a nonlinear reaction–diffusion systems arising in reversible chemistry. Syst. Model. Optim. IFIP AICT 443, 96–104 (2014)CrossRefMATHGoogle Scholar
- 14.Desvillettes, L., Fellner, K., Pierre, M., Vovelle, J.: About global existence of quadratic systems of reaction–diffusion. J. Adv. Nonlinear Stud. 7, 491–511 (2007)MATHGoogle Scholar
- 15.Desvillettes, L., Fellner, K., Tang, B.Q.: Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks. SIAM J. Math. Anal. 49(4), 2666–2709 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 16.Eliaš, J.: Mathematical Model of the Role and Temporal Dynamics of Protein p53 After Drug-Induced DNA Damage. PhD Thesis, Pierre and Marie Curie University (2015)Google Scholar
- 17.Eliaš, J.: Trend to equilibrium for a reaction-diffusion system modelling reversible enzyme reaction. Bull. Math. Biol. 80(1), 104–129 (2018). arXiv:1610.07172
- 18.Fellner, K., Laamri, E.-H.: Exponential decay towards equilibrium and global classical solutions for nonlinear reaction-diffusion systems. J. Evol. Equ. 16(3), 681–704 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 19.Feinberg, M.: Lectures on Chemical Reaction Networks. University of Wisconsin-Madison. https://crnt.osu.edu/LecturesOnReactionNetworks (1979)
- 20.Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors. I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42, 2229–2268 (1987)CrossRefGoogle Scholar
- 21.Feinberg, M., Horn, F.J.M.: Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chem. Eng. Sci. 29, 775–787 (1974)CrossRefGoogle Scholar
- 22.Fellner, K., Laamri, E.-H.: Exponential decay towards equilibrium and global classical solutions for nonlinear reaction–diffusion systems. J. Evol. Equ. 16, 681–704 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 23.Fellner, K., Latos, E., Suzuki, T.: Global classical solutions for mass-conserving, (super)-quadratic reaction–diffusion systems in three and higher space dimensions. Discrete Contin. Dyn. Syst. Ser. B. 21(10), 3441–3462 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 24.Fellner, K., Latos, E., Tang, B.Q.: Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(3), 643–673 (2018)MathSciNetCrossRefMATHGoogle Scholar
- 25.Fellner, K., Prager, W., Tang, B.Q.: The entropy method for reaction–diffusion systems without detailed balance: first order chemical reaction networks. Kinet. Relat. Models 10(4), 1055–1087 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 26.Fellner, K., Tang, B.Q.: Explicit exponential convergence to equilibrium for mass action reaction–diffusion systems with detailed balance condition. Nonlinear Anal. 159, 145–180 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 27.Fischer, J.: Global existence of renormalized solutions to entropy-dissipating reaction–diffusion systems. Arch. Ration. Mech. Anal. 218, 553–587 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 28.Fischer, J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction–diffusion equations. Nonlinear Anal. 159, 181–207 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 29.Fontbona, J., Jourdain, B.: A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations. Ann. Probab. 44, 131–170 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 30.Gröger, K.: Asymptotic behavior of solutions to a class of diffusion–reaction equations. Math. Nachr. 112(1), 19–33 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 31.Gröger, K.: On the existence of steady states of certain reaction–diffusion systems. Arch. Ration. Mech. Anal. 92(4), 297–306 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 32.Gröger, K.: Free Energy Estimates and Asymptotic Behaviour of Reaction–Diffusion Processes. Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin (1992)Google Scholar
- 33.Glitzky, A., Gröger, K., Hünlich, R.: Free energy and dissipation rate for reaction–diffusion processes of electrically charged species. Appl. Anal. 60, 201–217 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 34.Glitzky, A., Hünlich, R.: Energetic estimates and asymptotics for electro-reaction–diffusion systems. Z. Angew. Math. Mech. 77, 823–832 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 35.Gopalkrishnan, M.: On the Lyapunov function for complex-balanced mass-action systems. arXiv:1312.3043 (2013)
- 36.Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attractor conjecture. SIAM J. Appl. Dyn. Syst. 13, 758–797 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 37.Gentil, I., Zegarlinski, B.: Asymptotic behaviour of a general reversible chemical reaction–diffusion equation. Kinet. Relat. Models 3, 427–444 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 38.Gross, L.: Logarithmic sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)MathSciNetCrossRefMATHGoogle Scholar
- 39.Haskovec, J., Hittmeir, S., Markowich, P., Mielke, A.: Decay to equilibrium for energy-reaction–diffusion systems. SIAM J. Math. Anal. 50(1), 1037–1075 (2018)MathSciNetCrossRefMATHGoogle Scholar
- 40.Horn, F.J.M.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)MathSciNetCrossRefGoogle Scholar
- 41.Horn, F.J.M.: The dynamics of open reaction systems. In: SIAM-AMS Proceedings, vol. VIII, pp. 125–137. SIAM, Philadelphia (1974)Google Scholar
- 42.Horn, F.J.M., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)MathSciNetCrossRefGoogle Scholar
- 43.Kirane, M.: On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an autocatalytic reversible chemical reaction. Bull. Inst. Math. Acad. Sin. 18(4), 369–377 (1990)MathSciNetMATHGoogle Scholar
- 44.Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84, 1235–1260 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 45.Mielke, A., Haskovec, J., Markowich, P.A.: On uniform decay of the entropy for reaction–diffusion systems. J. Dyn. Differ. Equ. 27, 897–928 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 46.Pantea, C.: On the persistence and global stability of mass-action systems. SIAM J. Math. Anal. 44, 1636–1673 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 47.Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Springer, Berlin (1992)MATHGoogle Scholar
- 48.Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)MATHGoogle Scholar
- 49.Pierre, M.: Weak solutions and supersolutions in \(L^1\) for reaction–diffusion systems. J. Evol. Equ. 3, 153–168 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 50.Pierre, M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 51.Pierre, M., Schmitt, D.: Blowup in reaction–diffusion systems with dissipation of mass. SIAM Rev. 42(1), 93–106 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 52.Pierre, M., Suzuki, T., Zou, R.: Asymptotic behavior of solutions to chemical reaction–diffusion systems. J. Math. Anal. Appl. 450(1), 152–168 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 53.Quittner, P., Souplet, P.: Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States. Springer, Berlin (2007)MATHGoogle Scholar
- 54.Rothe, F.: Global Solutions of Reaction–Diffusion Systems. Lecture Notes in Mathematics. Springer, Berlin (1984)Google Scholar
- 55.Siegel, D., Johnston, M.D.: Linearization of complex balanced reaction systems (2008). https://www.researchgate.net/publication/253758553_Linearization_of_Complex_Balanced_Chemical_Reaction_Systems
- 56.Siegel, D., MacLean, D.: Global stability of complex balanced mechanisms. J. Math. Chem. 27, 89–110 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 57.Toscani, G., Villani, C.: On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Stat. Phys. 98(5–6), 1279–1309 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 58.Volpert, A.I.: Differential equations on graphs. Mat. Sb. 88(130), 578–588 (1972) (in Russian). Math. USSR-Sb. 17, 571–582 (1972) (in English) Google Scholar
- 59.Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatshefte für Chemie 32, 849–906 (1901)CrossRefMATHGoogle Scholar
- 60.Willett, D.: A linear generalization of Gronwall’s inequality. Proc. Am. Math. Soc. 16, 774–778 (1965)MathSciNetMATHGoogle Scholar
- 61.Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Zeitschrift für physikalische Chemie 39(1), 257–303 (1902)MATHGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.