Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium

Article
  • 29 Downloads

Abstract

An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy–Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.

Keywords

Brinkman equation Time-dependent electrophoresis Electrophoretic mobility 

Mathematics Subject Classification

76S05 76D07 76W05 

References

  1. 1.
    Reuss, F.F.: Sur un nouvel effet de l’électricité galvanique. Mem. Soc. Imp. Nat. Moscou 2, 326–337 (1809)Google Scholar
  2. 2.
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge Univ. Press, New York (1989)CrossRefMATHGoogle Scholar
  3. 3.
    Dukhin, A.S., Goetz, P.J.: Ultrasound for Characterizing Colloids: Particle Sizing. Zeta Potential Rheology. Elsevier, Amsterdam (2002)Google Scholar
  4. 4.
    Smoluchowski, M.: Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Int. Acad. Sci. Cracovie 8, 182–200 (1903)MATHGoogle Scholar
  5. 5.
    Burgreen, D., Nakache, F.R.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)CrossRefGoogle Scholar
  6. 6.
    Berli, C.L.A., Olivares, M.L.: Electrokinetic flow of non-Newtonian fluids in microchannels. J. Colloid Interface Sci. 320, 582–589 (2008)CrossRefGoogle Scholar
  7. 7.
    Chang, C.C., Wang, C.Y.: Electro-osmotic flow in a sector microchannel. Phys. Fluids 21, 042002 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Zhao, C., Yang, C.: Advances in electrokinetics and their applications in micro/nano fluidics. Microfluid. Nanofluid. 13, 179–203 (2012)CrossRefGoogle Scholar
  9. 9.
    Morrison, F.A.: Transient electrophoresis of an arbitrarily oriented cylinder. J. Colloid Interface Sci. 36, 139–145 (1971)CrossRefGoogle Scholar
  10. 10.
    Ivory, C.F.: Transient electroosmosis: the momentum transfer coefficient. J. Colloid Interface Sci. 96, 296–298 (1983)CrossRefGoogle Scholar
  11. 11.
    Keh, H.J., Tseng, H.C.: Transient electrokinetic flow in fine capillaries. J. Colloid Interface Sci. 242, 450–459 (2001)CrossRefGoogle Scholar
  12. 12.
    Jian, Y., Yang, L., Liu, Q.: Time periodic electro-osmotic flows through a microannulus. Phys. Fluids 22, 042001 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Morrison, F.A.: Transient electrophoresis of a dielectric sphere. J. Colloid Interface Sci. 29, 687–691 (1969)CrossRefGoogle Scholar
  14. 14.
    Keh, H.J., Huang, Y.C.: Transient electrophoresis of dielectric spheres. J. Colloid Interface Sci. 291, 282–291 (2005)CrossRefGoogle Scholar
  15. 15.
    Chen, G.Y., Keh, H.J.: Start-up of electrokinetic flow in a fibrous porous medium. J. Phys. Chem. C 118, 2826–2833 (2014)CrossRefGoogle Scholar
  16. 16.
    Chiang, C.C., Keh, H.J.: Transient electroosmosis in the transverse direction of a fibrous porous medium. Colloids Surf. A 481, 577–582 (2015)CrossRefGoogle Scholar
  17. 17.
    Chiang, C.C., Keh, H.J.: Startup of electrophoresis in a suspension of colloidal spheres. Electrophoresis 36, 3002–3008 (2015)CrossRefGoogle Scholar
  18. 18.
    Jones, E.H., Reynolds, D.A., Wood, A.L., Thomas, D.G.: Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49, 172–183 (2010)CrossRefGoogle Scholar
  19. 19.
    Pomès, V., Fernández, A., Houi, D.: Characteristic time determination for transport phenomena during the electrokinetic treatment of a porous medium. Chem. Eng. J. 87, 251–260 (2002)CrossRefGoogle Scholar
  20. 20.
    Oyanader, M.A., Arce, P., Dzurik, A.: Design criteria for soil cleaning operations in electrokinetic remediation: hydrodynamic aspects in a cylindrical geometry. Electrophoresis 26, 2878–2887 (2005)CrossRefGoogle Scholar
  21. 21.
    Riviere, J.E., Heit, M.C.: Electrically-assisted transdermal delivery. Pharm. Res. 14, 687–697 (1997)CrossRefGoogle Scholar
  22. 22.
    Pyell, U.: Characterization of nanoparticles by capillary electromigration separation techniques. Electrophoresis 31, 814–831 (2010)CrossRefGoogle Scholar
  23. 23.
    Calladine, C.R., Collis, C.M., Drew, H.R., Mott, M.R.: A study of electrophoretic mobility of DNA in agarose and polyacrylamide gels. J. Mol. Biol. 221, 981–1005 (1991)CrossRefGoogle Scholar
  24. 24.
    Shi, Q., Jackowski, G.: One-dimensional polyacrylamide gel electrophoresis. In: Hames, B.D. (ed.) Gel Electrophoresis of Proteins: A Practical Approach, pp. 1–52. Oxford University Press, Oxford (1998)Google Scholar
  25. 25.
    Magdeldin, S.: Gel Electrophoresis Principles and Basics. InTech, Rijeka (2012)CrossRefGoogle Scholar
  26. 26.
    Paillat, T., Moreau, E., Grimaud, P.O., Touchard, G.: Electrokinetic phenomena in porous media applied to soil decontamination. IEEE Trans. Dielectr. Electr. Insul. 7, 693–704 (2000)CrossRefGoogle Scholar
  27. 27.
    Wu, Y.F., Chou, W.L., Yen, S.C.: Removal of mercury and methylmercury from contaminated soils by applying an electric field. J. Environ. Sci. Health A 35, 1153–1170 (2000)CrossRefGoogle Scholar
  28. 28.
    Feng, J., Ganatos, P., Weinbaum, S.: Motion of a sphere near planar confining boundaries in a Brinkman medium. J. Fluid Mech. 375, 265–296 (1998)CrossRefMATHGoogle Scholar
  29. 29.
    Tsai, P., Huang, C.H., Lee, E.: Electrophoresis of a charged colloidal particle in porous media: boundary effect of a solid plane. Langmuir 27, 13481–13488 (2011)CrossRefGoogle Scholar
  30. 30.
    Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media II. Elsevier, Oxford (2002)MATHGoogle Scholar
  31. 31.
    Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)CrossRefMATHGoogle Scholar
  32. 32.
    Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Compos. A 40, 860–869 (2009)CrossRefGoogle Scholar
  33. 33.
    Vafai, K.: Handbook of Porous Media, 3rd edn. CRC Press, New York (2015)MATHGoogle Scholar
  34. 34.
    Neale, G., Epstein, M., Nader, W.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)CrossRefGoogle Scholar
  35. 35.
    Durlofsky, L., Brady, J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329–3341 (1987)CrossRefMATHGoogle Scholar
  36. 36.
    Sherief, H.H., Faltas, M.S., Saad, E.I.: Stokes resistance of a porous spherical particle in a spherical cavity. Acta Mech. 227, 1075–1093 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    El-Sapa, S., Saad, E.I., Faltas, M.S.: Axisymmetric motion of two spherical particles in a Brinkman medium with slip surfaces, fluid. Eur. J. Mech. B Fluids 67, 306–313 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    He, Y.Y., Lee, E.: Electrophoresis in concentrated dispersions of charged porous spheres. Chem. Eng. Sci. 63, 5719–5727 (2008)CrossRefGoogle Scholar
  39. 39.
    Keh, H.J., Anderson, J.L.: Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417–439 (1985)CrossRefMATHGoogle Scholar
  40. 40.
    Tsay, R., Weinbaum, S.: Viscous flow in a channel with periodic cross-bridging fibres: exact solutions and Brinkman approximation. J. Fluid Mech. 226, 125–148 (1991)CrossRefMATHGoogle Scholar
  41. 41.
    Uematsu, Y.: Electrophoresis of electrically neutral porous spheres induced by selective affinity of ions. Phys. Rev. E 91, 022303 (2015)CrossRefGoogle Scholar
  42. 42.
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Martinus Nijoff, The Hague (1983)MATHGoogle Scholar
  43. 43.
    Maribo-Mogensen, B., Kontogeorgis, G.M., Thomsen, K.: Comparison of the Debye-Hückel and the mean spherical approximation theories for electrolyte solutions. Ind. Eng. Chem. Res. 51, 5353–5363 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceDamanhour UniversityDamanhûrEgypt
  2. 2.Department of Mathematics, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations