Approximation of entropy solutions to degenerate nonlinear parabolic equations

  • Eduardo Abreu
  • Mathilde ColombeauEmail author
  • Evgeny Yu Panov


We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space \(L^\infty \), whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and \(L^1\)-stability. We prove that the sequence of approximate solutions is strongly \(L^1\)-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.


Partial differential equations Degenerate parabolic equations Entropy solutions Approximate solutions Stability 

Mathematics Subject Classification

35K55 35L65 65M12 


  1. 1.
    Albeverio, S., Danilov, V.G.: Construction of global in time solutions to Kolmogorov–Feller pseudodifferential equations with a small parameter using characteristics. Math. Nach. 285(4), 426–439 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albeverio, S., Shelkovich, V.M.: On delta shock problem. In: Rozanova, O. (ed.) Analytical Approaches to Multidimensional Balance Laws, pp. 45–88. Nova Science Publishers, New York (2005)Google Scholar
  3. 3.
    Andreianov, B., Maliki, M.: A note on uniqueness of entropy solutions to degenerate parabolic equations in \({\mathbb{R}}^N\). NoDEA: Nonlinear Differ. Equ. Appl. 17(1), 109–118 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Theory and Applications of Transport in Porous Media, vol. 23. Springer, Dordrecht (2011)zbMATHGoogle Scholar
  5. 5.
    Bebernes, J., Eberly, D.: Mathematical Problems from Combustion Theory. Applied Mathematical Sciences, vol. 83. Springer, New York (2013)zbMATHGoogle Scholar
  6. 6.
    Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colombeau, M.: Weak asymptotic methods for 3-D self-gravitating pressureless fluids; application to the creation and evolution of solar systems from the fully nonlinear Euler–Poisson equations. J. Math. Phys. 56, 061506 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Colombeau, M.: Approximate solutions to the initial value problem for some compressible flows. Zeitschrift fur Angewandte Mathematik und Physik 66(5), 2575–2599 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Colombeau, M.: Asymptotic study of the initial value problem to a standard one pressure model of multifluid flows in nondivergence form. J. Differ. Equ. 260(1), 197–217 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Danilov, V.G., Omel’yanov, G.A., Shelkovich, V.M.: Weak asymptotic method and interaction of nonlinear waves. AMS Trans. 208, 33–164 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Danilov, V.G., Mitrovic, D.: Delta shock wave formation in the case of triangular hyperbolic system of conservation laws. J. Differ. Equ. 245, 3704–3734 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Danilov, V.G., Shelkovich, V.M.: Dynamics of propagation and interaction of \( \delta \) shock waves in conservation law systems. J. Differ. Equ. 211, 333–381 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Danilov, V.G., Shelkovich, V.M.: Delta-shock wave type solution of hyperbolic systems of conservation laws. Q. Appl. Math. 63, 401–427 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gerritsen, M., Durlofsky, L.J.: Modeling of fluid flow in oil reservoirs. Ann. Rev. Fluid Mech. 37, 211–238 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Godunov, A.N.: Peano’s theorem in Banach spaces. Funktsional. Anal. i Prilozhen. 9(1), 59–60 (1975). (Russian)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Joseph, K.T., Sahoo, M.R.: Boundary Riemann problems for the one dimensional adhesion model. Can. Appl. Math. Q. 19, 19–41 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Joseph, K.T., Choudury, A.P., Sahoo, M.R.: Spherical symmetric solutions of multidimensional zero pressure gas dynamics system. J. Hyperbolic Differ. Equ. 11(2), 269–294 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Joseph, K.T., Sahoo, M.R.: Vanishing viscosity approach to a system of conservation laws admitting delta waves. Commun. Pure Appl. Anal. 12(6), 2091–2118 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Karlsen, K.H., Lie, K.A.: An unconditionally stable splitting scheme for a class of nonlinear parabolic equations. IMA J. Numer. Anal. 19(4), 609–635 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kruzhkov, S.N.: First order quasilinear equations in several independent variables. Mat. Sb. 81, 228–255 (1970). [(Russian). English Translation in Math USSR Sb. 10, 217–243 (1970)] MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kruzhkov, S.N., Panov, E.Yu.: First-order conservative quasilinear laws with an infinite domain of dependence on the initial data. Dokl. Akad. Nauk SSSR 314, 79–84 (1990). [(Russian). English Translation in Soviet Math. Dokl. 42, 316–321 (1991)] Google Scholar
  22. 22.
    Kruzhkov, S.N., Panov, EYu.: Osgood’s type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order. Ann. Univ. Ferrara Sez. VII (N.S.) 40, 31–54 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kmit, I., Kunzinger, M., Steinbauer, R.: Generalized solutions of the Vlasov–Poisson system with singular data. J. Math. Anal. Appl. 340(1), 575–587 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kunzinger, M., Rein, G., Steinbauer, R., Teschl, G.: Global weak solution of the relativistic Vlasov–Klein Gordon system. Commun. Math. Phys. 238(1–2), 367–378 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Maliki, M., Touré, H.: Uniqueness of entropy solutions for nonlinear degenerate parabolic problem. J. Evol. Equ. 3(4), 603–622 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Panov, EYu., Shelkovich, V.M.: \(\delta \)’-shock waves as a new type of solutions to systems of conservation laws. J. Differ. Equ. 228, 49–86 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Panov, EYu.: On the decay property for periodic renormalized solutions to scalar conservation laws. J. Differ. Equ. 260(3), 2704–2728 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sahoo, M.R.: Generalized solutions to a system of conservation laws which is not strictly hyperbolic. J. Math. Anal. Appl. 432(1), 214–232 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sahoo, M.R.: Weak asymptotic solutions for a nonstrictly hyperbolic system of conservation laws. Electron. J. Differ. Equ. 2016(94), 1–14 (2016)Google Scholar
  30. 30.
    Shelkovich, V.M.: \(\delta \)- and \(\delta ^{\prime }\)-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes. Russ. Math. Surv. 63(3), 405–601 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shelkovich, V.M.: The Riemann problem admitting \(\delta \)-, \(\delta ^{\prime }\)-shocks and vacuum states; the vanishing viscosity approach. J. Differ. Equ. 231, 459–500 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tory, E.M., Karlsen, K.H., Bürger, R., Berres, S.: Strongly degenerate parabolic–hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64(1), 41–80 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vazquez, J .L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. Clarendon Press, Oxford (2006)CrossRefGoogle Scholar
  34. 34.
    Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, vol. 42. Wiley, Hoboken (2011). (reprint) zbMATHGoogle Scholar
  35. 35.
    Zeidler, E.: Nonlinear Functional analysis and Its Applications. II/A: Linear Monotone Operators, vol. 467. Springer, New York (1989)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universidade Estadual de CampinasCampinasBrazil
  2. 2.Universidade de São PauloSão PauloBrazil
  3. 3.Universidade Estadual de CampinasCampinasBrazil
  4. 4.Novgorod State UniversityVeliky NovgorodRussian Federation
  5. 5.St. Petersburg State UniversitySaint PetersburgRussian Federation

Personalised recommendations