Finite deformations of an electroelastic circular cylindrical tube

  • Andrey Melnikov
  • Ray W. Ogden
Open Access


In this paper the theory of nonlinear electroelasticity is used to examine deformations of a pressurized thick-walled circular cylindrical tube of soft dielectric material with closed ends and compliant electrodes on its curved boundaries. Expressions for the dependence of the pressure and reduced axial load on the deformation and a potential difference between, or uniform surface charge distributions on, the electrodes are obtained in respect of a general isotropic electroelastic energy function. To illustrate the behaviour of the tube, specific forms of energy functions accounting for different mechanical properties coupled with a deformation independent quadratic dependence on the electric field are used for numerical purposes, for a given potential difference and separately for a given charge distribution. Numerical dependences of the non-dimensional pressure and reduced axial load on the deformation are obtained for the considered energy functions. Results are then given for the thin-walled approximation as a limiting case of a thick-walled cylindrical tube without restriction on the energy function. The theory described herein provides a general basis for the detailed analysis of the electroelastic response of tubular dielectric elastomer actuators, which is illustrated for a fixed axial load in the absence of internal pressure and fixed internal pressure in the absence of an applied axial load.


Nonlinear electroelasticity Electroelastic tube Dielectric elastomer tube 

Mathematics Subject Classification

74B20 74F15 



The work of Andrey Melnikov was funded by a University of Glasgow studentship.


  1. 1.
    Toupin, R.A.: The elastic dielectric. J. Ration. Mech. Anal. 5, 849–915 (1956)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Hutter, K., van de Ven, A.A.F.: Field matter interactions in thermoelastic solids. Lecture notes in physics vol. 88. Springer, Berlin (1978)Google Scholar
  3. 3.
    Nelson, D.F.: Electric, Optic, and Acoustic Interactions in Dielectrics. Wiley, New York (1979)Google Scholar
  4. 4.
    Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North Holland, Amsterdam (1988)zbMATHGoogle Scholar
  5. 5.
    Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua, vol. I. Springer, New York (1990)CrossRefGoogle Scholar
  6. 6.
    Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dorfmann, A., Ogden, R.W.: Nonlinear electroelastic deformations. J. Elast. 82, 99–127 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dorfmann, A., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A Phys. 64, 77–85 (1998)CrossRefGoogle Scholar
  10. 10.
    Pelrine, R., Sommer-Larsen, P., Kornbluh, R., Heydt, R., Kofod, G., Pei, Q., Gravesen, P.: Applications of dielectric elastomer actuators. In: Bar-Cohen, Y. (ed.) Smart Structures and Materials 2001, Electroactive Polymer Actuators and Devices, Proceedings of SPIE, vol. 4329. SPIE, Bellingham, WA (2001)Google Scholar
  11. 11.
    Dorfmann, A., Ogden, R.W.: Nonlinear response of an electroelastic spherical shell. Int. J. Eng. Sci. 85, 163–174 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Reynolds, D.B., Repperger, D.W., Phillips, C.A., Bandry, G.: Modeling the dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng. 31, 310–317 (2003)CrossRefGoogle Scholar
  13. 13.
    Goulbourne, N.C.: A mathematical model for cylindrical, fiber reinforced electro-pneumatic actuators. Int. J. Solids Struct. 46, 1043–1052 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P.: Dielectric Elastomers as Electromechanical Transducers. Elsevier, Amsterdam (2008)Google Scholar
  15. 15.
    Carpi, F., De Rossi, D.: Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Mat. Sci. Eng. C Biomim. Supramol. Syst. 24, 555–562 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhu, J., Stoyanov, H., Kofod, G., Suo, Z.: Large deformation and electromechanical instability of a dielectric elastomer tube actuator. J. Appl. Phys. 108, 074113 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhao, X., Hong, W., Suo, Z.: Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys. Rev. B 76, 134113 (2007)CrossRefGoogle Scholar
  18. 18.
    Ogden, R.W.: Large deformation isotropic elasticity—on thecorrelation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wolfram Research, Inc., Mathematica, Version 10.4, Champaign (2016)Google Scholar
  21. 21.
    Rudykh, S., Bhattacharya, K., deBotton, G.: Snap-through actuation of thick-wall electroactive balloons. Int. J. Non-Lin. Mech. 47, 206–209 (2012)CrossRefGoogle Scholar
  22. 22.
    Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. Lond. A 466, 1551–1596 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Arruda, E.M., Boyce, M.C.: A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)CrossRefGoogle Scholar
  24. 24.
    Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A 138, 384–393 (2007)CrossRefGoogle Scholar
  25. 25.
    Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity: incremental equations and stability. Int. J. Eng. Sci. 48, 1–14 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dorfmann, A., Ogden, R.W.: Electroelastic waves in a finitely deformed electroactive material. IMA J. Appl. Math. 75, 603–636 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dorfmann, L., Ogden, R.W.: Instabilities of an electroelastic plate. Int. J. Eng. Sci. 77, 79–101 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao, X., Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys. 104, 123530 (2008)CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Liu, L., Sun, S., Leng, J.: Electromechanical stability of a Mooney-Rivlin-type dielectric elastomer with nonlinear variable permittivity. Polym. Int. 59, 371–377 (2010)CrossRefGoogle Scholar
  30. 30.
    Jimé nez, S.M.A., McMeeking, R.M.: Deformation dependent dielectric permittivity and its effect on actuator performance and stability. Int. J. Non-Lin. Mech 57, 183–191 (2013)CrossRefGoogle Scholar
  31. 31.
    Bustamante, R.: Transversely isotropic non-linear electro-active elastomer. Acta Mech. 206(2009), 237–259 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK

Personalised recommendations