Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 5, pp 2473–2484 | Cite as

Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source

  • Qingshan ZhangEmail author
  • Yuxiang Li


This paper deals with the Neumann boundary value problem for the system
$$\left\{\begin{array}{lll}u_t = \nabla \cdot \left(D(u) \nabla u\right) - \nabla \cdot \left(S(u) \nabla v\right) + f(u), &\quad x \in \Omega, \, t > 0,\\ v_t = \Delta v - v + u, &\quad x \in \Omega, \, t > 0\end{array}\right.$$
in a smooth bounded domain \({\Omega\subset{\mathbb{R}}^n}\) \({(n\geq1)}\), where the functions D(u) and S(u) are supposed to be smooth satisfying \({D(u)\geq Mu^{-\alpha}}\) and \({S(u)\leq Mu^{\beta}}\) with M > 0, \({\alpha\in{\mathbb{R}}}\) and \({\beta\in{\mathbb{R}}}\) for all \({u\geq1}\), and the logistic source f(u) is smooth fulfilling \({f(0)\geq0}\) as well as \({f(u)\leq a-\mu u^{\gamma}}\) with \({a\geq0}\), \({\mu > 0}\) and \({\gamma\geq1}\) for all \({u\geq0}\). It is shown that if
$$\alpha + 2\beta < \left\{\begin{array}{lll}\gamma - 1 + \frac{2}{n}, &\quad {\rm for} \, 1 \leq \gamma < 2,\\ \gamma - 1 + \frac{4}{n + 2}, &\quad {\rm for} \, \gamma \geq 2,\end{array}\right.$$
then for sufficiently smooth initial data, the problem possesses a unique global classical solution which is uniformly bounded.


Quasilinear chemotaxis system Logistic source Global solution Boundedness 

Mathematics Subject Classification

35K59 92C17 35K55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao X.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source. J. Math. Anal. Appl. 412, 181–188 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cieślak T., Stinner C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cieślak T., Stinner C.: Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2. Acta Appl. Math. 129, 135–146 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cieślak T., Stinner C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hillen T., Painter K.: Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26, 280–301 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Horstmann D., Wang G.: Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12, 159–177 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ishida S., Seki K., Yokota T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lankeit J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J. Differ. Equ. 258, 1158–1191 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li X., Xiang Z.: Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source. Discrete Contin. Dyn. Syst. 35, 3503–3531 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mizoguchi N., Souplet P.: Nondegeneracy of blow-up points for the parabolic Keller–Segel system. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 851–875 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Nakaguchi E., Osaki K.: Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation. Nonlinear Anal. 74, 286–297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nakaguchi E., Osaki K.: Global solutions and exponential attractors of a parabolic–parabolic system for chemotaxis with subquadratic degradation. Discrete Contin. Dyn. Syst. Ser. B 18, 2627–2646 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Painter K.J., Hillen T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Quittner, P., Souplet, P.: Superlinear parabolic problems. Birkhäuser advanced texts: Basler Lehrbücher. [Birkhäuser advanced texts: Basel textbooks], Birkhäuser Verlag, Basel (2007). Blow-up, global existence and steady statesGoogle Scholar
  20. 20.
    Senba T., Suzuki T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl. Anal. 8, 349–367 (2001) IMS Workshop on Reaction–Diffusion Systems (Shatin, 1999)Google Scholar
  21. 21.
    Tao Y., Winkler M.: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang L., Li Y., Mu C.: Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 34, 789–802 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Winkler M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Winkler M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse?. Math. Methods Appl. Sci. 33, 12–24 (2010)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Winkler M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. (9) 100, 748–767 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Winkler M.: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening. J. Differ. Equ. 257, 1056–1077 (2014)CrossRefzbMATHGoogle Scholar
  28. 28.
    Winkler M., Djie K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72, 1044–1064 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xiang T.: Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source. J. Differ. Equ. 258, 4275–4323 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsSoutheast UniversityNanjingPeoples Republic of China

Personalised recommendations