Advertisement

Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 5, pp 2143–2160 | Cite as

The selection for dispersal: a diffusive competition model with a free boundary

  • Jie WangEmail author
Article

Abstract

This paper considers the population dynamics of an invasive species and a resident species, using a diffusive competition model in a radially symmetric heterogeneous environment with a free boundary. We assume that the resident species diffuses and expands in \({\mathbb{R}^n}\) , and the invasive species initially resides in a finite ball, but invades the environment with a spreading front that evolves as the free boundary. Our investigation aims to understand how the model dynamics are affected by the dispersal rate \({d_u}\) , expansion capacity \({\mu}\) and initial number u 0 of the invasive species. We show that a spreading–vanishing dichotomy exists and obtain the sharp criteria for spreading and vanishing by varying the parameters d u , \({\mu}\) and u 0. For the invasive species, we found an unconditional selection for slow dispersal rate, but a conditional selection for fast dispersal rate, that is, the selection for fast dispersal depends on the expansion capacity and initial number of the invasive species.

Keywords

Diffusive competition model Invasive population Selection for dispersal Free boundary Spreading–vanishing dichotomy 

Mathematics Subject Classification

35K20 35R35 35J60 92B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In: Goldstein J.A. (eds.) Partial Differential Equations and Related Topics, Lecture Notes in Mathematics Series, pp. 5–49. Springer, Berlin (1975)Google Scholar
  2. 2.
    Aronson D.G., Weinberger H.F.: Multidimensional nonlinear diffusion arising in population dynamics. Adv. Math. 30, 33–76 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bunting G., Du Y.H., Krakowski K.: Spreading speed revisited: analysis of a free boundary model. Netw. Heterog. Media (special issue dedicated to H. Matano) 7, 583–603 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cosner C.: Reaction–diffusion–advection models for the effects and evolution of dispersal. Discrete Cont. Dyn. Syst. 34, 1701–1745 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cantrell R.S., Cosner C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley, Hoboken (2003)zbMATHGoogle Scholar
  6. 6.
    Cantrell R.S., Cosner C., Lou Y.: Evolution of dispersal in heterogeneous landscape. In: Cantrell, R.S., Cosner, C., Ruan, S. (eds) Spatial Ecology, pp. 213–229. Chapman Hall/CRC Press, Boca Raton (2009)Google Scholar
  7. 7.
    Dockery J., Hutson V., Mischaikow K., Pernarowski M.: The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol. 37, 61–83 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Du Y.H., Guo Z.M.: Spreading–vanishing dichotomy in the diffusive logistic model with a free boundary II. J. Differ. Equ. 250, 4336–4366 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Du Y.H., Guo Z.M., Peng R.: A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 265, 2089–2142 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Du Y.H., Lin Z.G.: Spreading–vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42, 377–405 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du Y.H., Lin Z.G.: The diffusive competition model with a free boundary: invasion of a superior or inferior competitor. Discrete Cont. Dyn. Syst.-B (Special issue for Chris Cosner) 19(10), 3105–3132 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Du Y.H., Liu L.S.: Remarks on the uniqueness problem for the logistic equation on the entire space. Bull. Aust. Math. Soc. 73, 129–137 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Du, Y.H., Lou, B.D.: Spreading and vanishing in nonlinear diffusion problems with free boundaries, arXiv:1301.5373 (2013)
  14. 14.
    Du Y.H., Ma L.: Logistic type equations on \({\mathbb{R}^n}\) by a squeezing method involving boundary blow-up solutions. J. Lond. Math. Soc. 64, 107–124 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Guo J.S., Wu C.H.: On a free boundary problem for a two-species weak competition system. J. Dyn. Differ. Equ. 24, 873–895 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    : Can spatial variation alone lead to selection for dispersal?. Theory Pop. Biol. 24, 244–251 (1983)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hutson V., Martinez S., Mischaikow K., Vickers G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hutson V., Mischaikow K., Poláčik P.: The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hosono Y.: The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model. Bull. Math. Biol. 60, 435–448 (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lewis M.A., Li B.T., Weinberger H.F.: Spreading speed and the linear determinacy for two-species competition models. J. Math. Biol. 45, 219–233 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lei C.X., Lin Z.G., Zhang Q.Y.: The spreading front of invasive species in favorable habitat or unfavorable habitat. J. Differ. Equ. 257, 145–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lin Z.G.: A free boundary problem for a predator–prey model. Nonlinearity 20, 1883–1892 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    McPeek M.A., Holt R.D.: The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140, 1010–1027 (1992)CrossRefGoogle Scholar
  24. 24.
    Peng R., Zhao X.-Q.: The diffusive logistic model with a free boundary and seasonal succession. Discrete Contin. Dyn. Syst. 33, 2007–2031 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang M.X.: On some free boundary problems of the Lotka–Volterra type prey–predator model. J. Differ. Equ. 256, 3365–3394 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    Wang M.X.: The diffusive logistic equation with a free boundary and sign-changing coefficient. J. Differ. Equ. 258, 1252–1266 (2015)CrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, M.X., Zhao, J.F.: A free boundary problem for a predator–prey model with double free boundaries, arXiv:1312.7751 (2013)
  28. 28.
    Wang M.X., Zhao J.F.: Free boundary problem for a Lotka–Volterra competition system. J. Dyn. Differ. Equ. 26, 655–672 (2014)CrossRefzbMATHGoogle Scholar
  29. 29.
    Zhao J.F., Wang M.X.: A free boundary problem of a predator–prey model with higher dimension and heterogeneous environment. Nonlinear Anal.: Real World Appl. 16, 250–263 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou P., Xiao D.M.: The diffusive logistic model with a free boundary in heterogeneous environment. J. Differ. Equ. 256, 1927–1954 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations