Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 5, pp 2647–2663 | Cite as

Resonant radial oscillations of an inhomogeneous gas in the frustum of a cone

  • D. E. AmundsenEmail author
  • M. P. Mortell
  • B. R. Seymour


The effects of nonlinearity, geometry and inhomogeneity on the resonant motion of a gas contained in the frustum of a cone are investigated. The motion is radially symmetric, and the inhomogeneity arises from a body force term. We show how to construct a variable density, containing an arbitrary parameter \({\mu}\) , that can be used to approximate a given density \({\rho(r)}\) . The approximate density allows us to solve exactly the eigenvalue equation associated with linear theory. This is the basis for continuous resonant solutions. There is a critical value of the parameter \({\mu}\) which separates when the system behaves like a hard or soft spring. When motions are shocked, they may be represented by the superposition of oppositely traveling modulated simple waves. In all cases, approximate solutions are compared with exact numerical solutions.


Resonance Spherical geometry Geometrical acoustics limit Shocks Stratification Hard (soft) spring 

Mathematics Subject Classification

Primary 76Nxx Secondary 74J30 34F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Whitham G.B.: The flow pattern of a supersonic projectile. Commun. Pure Appl. Math. 5, 301–348 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Whitham G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)zbMATHGoogle Scholar
  3. 3.
    Mortell M.P., Seymour B.R.: Pulse propagation in a nonlinear viscoelastic rod of finite length. SIAM J. Appl. Math. 22, 209–224 (1972)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chester W.: Acoustic resonance in spherically symmetric waves. Proc. R. Soc. Lond. A 434, 459–463 (1991). doi: 10.1098/rspa.1991.0105 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ellermeier W.: Acoustic resonance in cylindrically symmetric waves. Proc. R. Soc. Lond. A. 445, 181–191 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Seymour B.R., Mortell M.P., Amundsen D.E.: Resonant oscillations of an inhomogeneous gas between concentric spheres. Proc. R. Soc. Lond. A 467, 2149–2167 (2011). doi: 10.1098/rspa.2010.0576 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kurihara E., Inoue Y., Yano T.: Nonlinear resonant oscillations and shock waves generated between coaxial cylinders. Fluid Dyn. Res. 36, 45–60 (2005). doi: 10.1016/j.fluiddyn.2004.11.001 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Seymour, B.R., Mortell, M.P., Amundsen, D.E.: Asymptotic solutions for shocked resonant acoustic oscillations between concentric spheres and coaxial cylinders. Phys. Fluids 24 (2012). doi: 10.1063/1.3687611
  9. 9.
    Keller J.J.: Nonlinear acoustic resonances in shock tubes with varying cross-sectional area. J. Appl. Math Appl. Phys. (ZAMP) 28, 107–122 (1977)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ockendon H., Ockendon J.R., Peake M.R., Chester W.: Geometrical effects in resonant gas oscillations. J. Fluid Mech. 257, 201–217 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chester W.: Nonlinear resonant oscillations of a gas in a tube of varying cross-section. Proc. R. Soc. Lond. A. 444, 591–604 (1994). doi: 10.1098/rspa.1994.0055 CrossRefzbMATHGoogle Scholar
  12. 12.
    Lawrenson C.C., Lipkens B., Lucas T.S., Perkins D.K., Van Doren T.W.: Measurements of macrosonic standing waves in oscillating closed cavities. J. Acoust. Soc. Am. 104, 623–636 (1998). doi: 10.1121/1.423306 CrossRefGoogle Scholar
  13. 13.
    Mortell M.P., Seymour B.R.: Nonlinear resonant oscillations in closed tubes of variable cross-section. J. Fluid Mech. 519, 183–199 (2004). doi: 10.1017/S0022112004001314 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ockendon H., Ockendon J.R.: Nonlinearity in fluid resonances. Meccanica 36, 297–321 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Moiseyev N.N.: On the theory of nonlinear vibrations of a liquid of finite volume. Prikl. Math. Mech. 22, 612–621 (1958)Google Scholar
  16. 16.
    Stoker J.J.: Nonlinear Vibrations. Interscience Publishers Inc., New York (1950)zbMATHGoogle Scholar
  17. 17.
    Mortell M.P.: Resonant oscillations: a regular perturbation approach. J. Math. Phys. 12, 1069–1075 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Collins W.D.: Forced oscillations of systems governed by one-dimensional nonlinear wave equations. Q. J. Mech. Appl. Math. 24, 129–153 (1971)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mortell M.P., Seymour B.R: Finite amplitude, shockless, resonant vibrations of an inhomogeneous elastic panel. Math. Mech. Solids 10, 427–440 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ellermeier W.: Nonlinear acoustics in non-uniform infinite and finite layers. J. Fluid Mech. 257, 183–200 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ellermeier W.: Resonant wave motion in a non-homogeneous system. ZAMP 45, 275–286 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Seymour B.R., Mortell M.P.: Resonant acoustic oscillations with damping: small rate theory. J. Fluid Mech. 58, 353–374 (1973). doi: 10.1017/S0022112073002636 CrossRefzbMATHGoogle Scholar
  23. 23.
    Seymour B.R., Mortell M.P.: Nonlinear geometrical acoustics. Mech. Today 2, 251–312 (1975)CrossRefGoogle Scholar
  24. 24.
    Chester W.: Resonant oscillations in a closed tube. J. Fluid Mech. 18, 44–64 (1964)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lichtenberg A.J., Lieberman M.A.: Regular and Stochastic Motion. Springer, New York (1982)Google Scholar
  26. 26.
    Lamb H.: Hydrodynamics. Cambridge University Press, Cambridge, MA (1993)zbMATHGoogle Scholar
  27. 27.
    Shampine L.F.: Solving hyperbolic PDEs in Matlab. Appl. Numer. Anal. Comput. Math. 2, 346–358 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ghidaglia J.M., Kumbaro A., LeCoq G.: Finite volume method with characteristic flux for solving hyperbolic systems of conservation laws. Comptes rendus de l’Académie des sciences. Série 1 Mathématique 322, 981–988 (1996)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Leveque R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, MA (2002)CrossRefGoogle Scholar
  30. 30.
    Mortell M.P., Mulchrone K.F., Seymour B.R.: The evolution of macrosonic standing waves in a resonator. Int. J. Eng. Sci. 47, 1305–1314 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hamilton M.F., Ilinskii Y.A., Zabolotskaya E.A.: Nonlinear frequency shifts in acoustical resonators with varying cross sections. J. Acoust. Soc. Am. 125(3), 1310–1318 (2009)CrossRefGoogle Scholar
  32. 32.
    Waterhouse D.D.: Resonant sloshing near a critical depth. J. Fluid Mech. 281, 313–318 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • D. E. Amundsen
    • 1
    Email author
  • M. P. Mortell
    • 2
  • B. R. Seymour
    • 3
  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.Department of Applied MathematicsUniversity College CorkCorkIreland
  3. 3.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations