Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 4, pp 2069–2079 | Cite as

On a class of reciprocal Stefan moving boundary problems

  • Colin Rogers


This paper concerns the action of reciprocal transformations on a class of moving boundary problems of Stefan type. Thus, an established integral representation is combined with a reciprocal transformation to obtain parametric exact solution to classes of moving boundary problems which arise, in particular, in the context of the percolation of liquids through a porous medium such as soil. Importantly, the procedure is shown to extend to a wide class of moving boundary value problems which incorporate heterogeneity in the porous medium.


Stefan Reciprocal and Moving boundary 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubenstein L.I.: The Stefan Problem, American Mathematical Society Translations Vol. 27. American Mathematical Society, Providence (1971)Google Scholar
  2. 2.
    Friedman A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)zbMATHGoogle Scholar
  3. 3.
    Elliot, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics Vol. 59, New York, Pitman (1982)Google Scholar
  4. 4.
    Crank J.: Free and Moving Boundary Value Problems. Clarendon Press, Oxford (1984)Google Scholar
  5. 5.
    Alexides V., Solomon A.D.: Mathematical Modelling of Melting and Freezing Processes. Hemisphere Taylor and Francis, Washington (1996)Google Scholar
  6. 6.
    Tarzia D.A.: A bibliography on moving-free boundary wave problems for the heat diffusion equation. Stefan Problem. MAT Serie A 2, 1–297 (2000)Google Scholar
  7. 7.
    Calogero F., De Lillo S.: The Burgers equation on the semi-infinite and finite intervals. Nonlinearity 2, 37–43 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Calogero F., De Lillo S.: Flux infiltration into soils: analytic solutions. J. Phys. A Math. Gen. 27, L137 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ablowitz M.J., De Lillo S.: Solutions of a Burgers–Stefan problem. Phys. Lett. A 271, 273–276 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ablowitz M.J., De Lillo S.: On a Burgers–Stefan problem. Nonlinearity 13, 471–478 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rogers C.: Application of a reciprocal transformation to a two phase Stefan problem. J. Phys. A Math. Gen. 18, L105–L109 (1985)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rogers C.: On a class of moving boundary value problems in nonlinear heat conduction. Application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)CrossRefzbMATHGoogle Scholar
  13. 13.
    Storm M.L.: Heat equations in simple metals. J. Appl. Phys. 22, 940–951 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rogers C., Guo B.Y.: A note on the onset of melting in a class of simple metals. Conditions on the applied boundary flux. Acta Math. Sci. 8, 425–430 (1988)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Tarzia D.A.: An inequality for the coefficient \({\sigma}\) of the free boundary \({s(t) = \sigma\sqrt{t}}\) of the Neumann problem for the two-phase Stefan problem. Quart. Appl. Math. 39, 491–497 (1981)MathSciNetGoogle Scholar
  16. 16.
    Solomon A.D., Wilson D.G., Alexides V.: Explicit solutions to phase problems. Quart. Appl. Math. 41, 237–243 (1983)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rogers C.: Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit. Ang. Math. Phys. 19, 58–63 (1968)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rogers C.: Invariant transformations in non-steady gasdynamics and magneto-gasdynamics. Zeit. Ang. Math. Phys. 20, 370–382 (1969)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kingston J.G., Rogers C.: Reciprocal Bäcklund transformations of conservation laws. Phys. Lett. 92A, 261–264 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rogers C., Wong P.: On reciprocal Bäcklund transformations of inverse scattering schemes. Phys. Scripta 30, 10–14 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rogers C., Nucci M.C.: On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy. Phys. Scripta 33, 289–292 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rogers C.: The Harry Dym equation in 2+1 dimensions: a reciprocal link with the Kadomtsev–Petviashvili equation. Phys. Lett. A 120, 15–18 (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rogers C., Carillo S.: On reciprocal properties of the Caudrey-Dodd-Gibbon and Kaup-Kupershmidt hierarchies. Phys. Scripta 36, 865–869 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Konopelchenko, B., Rogers, C.: Bäcklund and reciprocal transformations: gauge connections. In Nonlinear Equations in Applied Science, pp. 317–362. Academic Press, New York (1992)Google Scholar
  25. 25.
    Oevel W., Rogers C.: Gauge transformations and reciprocal links in 2+1-dimensions. Rev. Math. Phys. 5, 299–330 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schief W.K., Rogers C.: The affinsphären equation. Moutard and Bäcklund transformations. Inverse Probl. 10, 711–731 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rogers C., Huang Y.: On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection. Phys. Lett. A. 376, 1446–1450 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Degasperis A., Holm D.D., Hone A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rogers C., Shadwick W.F.: Bäcklund Transformations and Their Applications. Mathematics in Science and Engineering Series. Academic Press, New York (1982)Google Scholar
  30. 30.
    Rogers C., Schief W.K.: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)Google Scholar
  31. 31.
    Richards L.A.: Capillary conduction of liquids through porous mediums. Physics (N.Y.) 1, 318–333 (1931)zbMATHGoogle Scholar
  32. 32.
    Fokas A.S., Yortsos Y.C.: On the exactly soluble equation \({S_t = [(\beta S + \gamma)^{-2}S_x]_x + \alpha(\beta S + \gamma)^{-2}S_x}\) occurring in two phase flow in porous media. Soc. Ind. Appl. Math. J. Appl. Math. 42, 318–332 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rogers C., Stallybrass M.P., Clements D.L.: On two phase filtration under gravity and with boundary infiltration: application of a Bäcklund transformation. Nonlinear Anal. Theory Methods Appl. 7, 785–799 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Fokas A.S., Rogers C., Schief W.K.: Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Broadbridge P., Knight J.H., Rogers C.: Constant rate rainfall infiltration in a bounded profile: solutions of a nonlinear model. Soil. Sci. Soc. Am. J. 52, 1526–1533 (1988)CrossRefGoogle Scholar
  36. 36.
    Broadbridge P., White I.: Constant rate rainfall infiltration: a versatile nonlinear model I. Analytic solution. Water Resour. Res. 24, 145–154 (1988)CrossRefGoogle Scholar
  37. 37.
    Rogers C., Schief W.K.: The classical Korteweg capillarity system: geometry and invariant transformations. J. Phys. A Math. Theor. 47, 345201 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Keller J.B.: Melting and freezing at constant speed. Phys. Fluids 92, 2013 (1986)CrossRefGoogle Scholar
  39. 39.
    Briozzo A.C., Tarzia D.A.: Explicit solution of a free boundary problem for a nonlinear absorption model of mixed saturated-unsaturated flow. Adv. Water Resour. 21, 713–721 (1998)CrossRefGoogle Scholar
  40. 40.
    Karal F.C., Keller J.B.: Elastic wave propagation in homogeneous and inhomogeneous media. J. Acoust. Soc. Am. 31, 694–705 (1959)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rogers C., Clements D.L., Moodie T.B.: Transient displacement and stress in non-homogeneous elastic shells. J. Elasticity 7, 171–184 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Barclay D.W., Moodie T.B., Rogers C.: Cylindrical impact waves in homogeneous Maxwellian visco-elastic media. Acta Mech. 29, 93–117 (1978)CrossRefzbMATHGoogle Scholar
  43. 43.
    Bergman S.: Integral Operators in the Theory of Partial Differential Equations. Springer, Berlin (1968)Google Scholar
  44. 44.
    Clements D.L., Atkinson C., Rogers C.: Anti-plane crack problems for an inhomogeneous elastic material. Acta Mech. 29, 199–211 (1978)CrossRefzbMATHGoogle Scholar
  45. 45.
    Rogers C., Clements D.L.: Bergman’s integral operator method in inhomogeneous elasticity. Quart. Appl. Math. 36, 315–321 (1978)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Clements D.L., Rogers C.: On the Bergman operator method and anti-plane contact problems involving an inhomogeneous half-space. Soc. Ind. Appl. Math. J. Appl. Math. 34, 764–773 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rogers C., Sawatsky R.: Heat conduction in an inhomogeneous half-space subject to a nonlinear boundary condition. Application of Bergman-type series. Int. J. Eng. Sci. 23, 415–424 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Rogers C., Schief W.K.: The classical Bäcklund transformation and integrable discretisation of characteristic equations. Phys. Lett. A 232, 217–223 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Broadbridge P.: Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media. J. Math. Phys. 29, 622–627 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Rogers C., Broadbridge P.: On a nonlinear moving boundary value problem with heterogeneity: application of a reciprocal transformation. Zeit. Ang. Math. Phys. 39, 122–128 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems, School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia

Personalised recommendations