Zeitschrift für angewandte Mathematik und Physik

, Volume 66, Issue 4, pp 1737–1749 | Cite as

Sampling theory for Sturm–Liouville problem with boundary and transmission conditions containing an eigenparameter

  • Fatma HıraEmail author
  • Nihat Altınışık


In this paper, we derive the sampling theorem associated with a Sturm–Liouville problem which has two points of discontinuity and contains an eigenparameter in a boundary condition and also two transmission conditions. We establish briefly spectral properties of the problem, and then, we prove the sampling theorem associated with the problem.


Whittaker–Shannon’s sampling theory Kramer’s sampling theory Discontinuous Sturm–Liouville problems 

Mathematics Subject Classification

34L10 34B24 41A05 94A20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paley, R., Wiener, N.: Fourier transforms in the complex domain. Am. Math. Soc. Colloq. Publ. 19 (1934)Google Scholar
  2. 2.
    Zayed A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)zbMATHGoogle Scholar
  3. 3.
    Butzer P.L., Schmeisser G.R., Stens L.: An introduction to sampling analysis. In: Marvasti, F. (ed.) Nonuniform Sampling, Theory and Practice, pp. 17–21. Kluwer Academic, New York (2001)CrossRefGoogle Scholar
  4. 4.
    Levinson, N.: Gap and density theorems. Am. Math. Soc. Colloq. Publ. 26 (1940)Google Scholar
  5. 5.
    Kramer H.P.: A generalized sampling theorem. J. Math. Phys. 38, 68–72 (1959)zbMATHGoogle Scholar
  6. 6.
    Everitt W.N., Nasri-Roudsari G., Rehberg J.: A note on the analytic form of the Kramer sampling theorem. Results Math. 34(3–4), 310–319 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Everitt W.N., García A.G., Hernández-Medina M.A.: On Lagrange-type interpolation series and analytic Kramer kernels. Results Math. 51, 215–228 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    García A.G., Littlejohn L.L.: On analytic sampling theory. J. Comput. Appl. Math. 171, 235–246 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Everitt W.N., Nasri-Roudsari G.: Interpolation and sampling theories and linear ordinary boundary value problems. In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis: Advanced Topics, Ch. 5, Oxford University Press, Oxford (1999)Google Scholar
  10. 10.
    Everitt W.N., Schöttler G., Butzer P.L.: Sturm–Liouville boundary value problems and Lagrange interpolation series. J. Rend. Math. Appl. 14, 87–126 (1994)zbMATHGoogle Scholar
  11. 11.
    Zayed A.I.: On Kramer’s sampling theorem associated with general Sturm–Liouville boundary value problems and Lagrange interpolation. SIAM J. Appl. Math. 51, 575–604 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zayed A.I., Hinsen G., Butzer P.L.: On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm–Liouville problems. SIAM J. Appl. Math. 50, 893–909 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boumenir A., Chanane B.: Eigenvalues of S–L systems using sampling theory. Appl. Anal. 62, 323–334 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Annaby M.H., Bustoz J., Ismail M.E.H.: On sampling theory and basic Sturm–Liouville systems. J. Comput. Appl. Math. 206, 73–85 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Boumenir A., Zayed A.I.: Sampling with a string. J. Fourier Anal. Appl. 8, 211–231 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Annaby M.H., Tharwat M.M.: On sampling theory and eigenvalue problems with an eigenparameter in the boundary conditions. SUT J. Math. 42, 157–176 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Boumenir A.: The sampling method for SL problems with the eigenvalue in the boundary conditions. J. Numer. Func. Anal. Optim. 21, 67–75 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Annaby M., Freiling G.: A sampling theorem for transforms with discontinuous kernels. Appl. Anal. 83, 1053–1075 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Annaby M.H., Freiling G., Zayed A.I.: Discontinuous boundary-value problems: expansion and sampling theorems. J. Integr. Equ. Appl. 16, 1–23 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zayed A.I., García A.G.: Kramer’s sampling theorem with discontinuous kernels. Results Math. 34, 197–206 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kobayashi M.: Eigenfunction expansions: a discontinuous version. SIAM J. Appl. Math. 50, 910–917 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tharwat, M.M.: Discontinuous Sturm–Liouville problems and associated sampling theories. Abstr. Appl. Anal. doi: 10.1155/2011/610232 (2011)
  23. 23.
    Altınışık N., Kadakal M., Mukhtarov O.Sh.: Eigenvalues and eigenfunctions of discontinuous Sturm Liouville problems with eigenparameter dependent boundary conditions. Acta Math. Hungar. 102, 159–175 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kadakal M., Mukhtarov O.Sh.: Sturm Liouville problems with discontinuities at two points. Comput. Math. Appl. 54, 1367–1379 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mukhtarov O.Sh., Kadakal M., Altınışık N.: Eigenvalues and eigenfunctions of discontinuous Sturm Liouville problems with eigenparameter in the boundary conditions. Indian J. Pure Appl. Math. 34, 501–516 (2003)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Titchmarsh E.C.: Eigenfunctions Expansion Associated with Second Order Differential Equations I. Oxford University Press, London (1962)Google Scholar
  27. 27.
    Levitan, B.M., Sargjan, I.S.: Introduction to Spectral Theory Self-Adjoint Ordinary Differential Operators. American Mathematical Society, Providence, RI. Translation of Mth., Monographs 39 (1975)Google Scholar
  28. 28.
    Boas R.P.: Entire Functions. Academic Press, New York (1954)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Arts and Science FacultyOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations