Vortex-type solutions to a magnetic nonlinear Choquard equation

  • Dora Salazar


We consider the stationary nonlinear magnetic Choquard equation
$$(-{\rm i}\nabla + A(x))^{2} u + W(x)u = \left(\frac{1}{|x|^{\alpha}} \ast |u|^{p}\right) |u|^{p - 2}u, \quad x \in \mathbb{R}^N,$$
where \({N \geq 3, \alpha \in (0, N), p \in \bigl[2, \frac{2N - \alpha}{N - 2}\bigr), A : \mathbb{R}^N \rightarrow \mathbb{R}^N}\) is a magnetic potential and \({W : \mathbb{R}^N \rightarrow \mathbb{R}}\) is a bounded electric potential. For a given group \({\Gamma}\) of linear isometries of \({\mathbb{R}^N}\), we assume that A(gx) = gA(x) and W(gx) = W(x) for all \({g \in \Gamma, x \in \mathbb{R}^N}\). Under some assumptions on the decay of A and W at infinity, we establish the existence of solutions to this problem which satisfy
$$u(\gamma{x}) = \phi(\gamma)u(x) \quad {\rm for\, all} \gamma \in \Gamma,\, x \in \mathbb{R}^N,$$
where \({\phi : \Gamma \rightarrow \mathbb{S}^1}\) is a given continuous group homomorphism into the unit complex numbers.

Mathematics Subject Classification (2010)

Primary 35Q55 Secondary 35Q40 35A01 35B06 35J20 


Nonlinear Choquard equation Nonlocal nonlinearity Electromagnetic potential Vortex-type solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chossat P., Lauterbach R., Melbourne I.: Steady-state bifurcation with O(3)-symmetry. Arch. Ration. Mech. Anal. 113, 313–376 (1990)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cingolani S., Clapp M., Secchi S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cingolani S., Clapp M., Secchi S.: Intertwining semiclassical solutions to a Schrödinger–Newton system. Discret. Contin. Dyn. Syst. Ser. S 6, 891–908 (2013)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Cingolani S., Secchi S.: Multiple \({\mathbb{S}^1}\)-orbits for the Schrödinger–Newton system. Differ. Integral Equ. 26, 867–884 (2013)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cingolani S., Secchi S., Squassina M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973–1009 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Clapp M., Salazar D.: Multiple sign changing solutions of nonlinear elliptic problems in exterior domains. Adv. Nonlinear Stud. 12, 427–443 (2012)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Clapp M., Salazar D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lieb E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976)MathSciNetGoogle Scholar
  10. 10.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Math, vol. 14. 2nd edn. American Mathematical Society, Providence, Rhode Island (2001)Google Scholar
  11. 11.
    Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lions P.-L.: The Choquard equation and related equations. Nonlinear Anal. 4, 1063–1073 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Menzala G.P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. R. Soc. Edinb. Sect. A 86, 291–301 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Moroz I.M., Penrose R., Tod P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Moroz I.M., Tod P.: An analytical approach to the Schrödinger–Newton equations. Nonlinearity 12, 201–216 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Moroz V., Van Schaftingen J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equations. Calc. Var. doi: 10.1007/s00526-014-0709-x
  19. 19.
    Nolasco M.: Breathing modes for the Schrödinger–Poisson system with a multiple-well external potential. Commun. Pure Appl. Anal. 9, 1411–1419 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Palais R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Penrose R.: On gravity’s role in quantum state reduction. Gen. Relativ Gravit. 28, 581–600 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Penrose R.: Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356, 1927–1939 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Penrose, R.: The Road to Reality. A Complete Guide to the Laws of the Universe. Alfred A. Knopf, Inc., New York (2005)Google Scholar
  24. 24.
    Secchi S.: A note on Schrödinger–Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Tod K.P.: The ground state energy of the Schrödinger–Newton equation. Phys. Lett. A 280, 173–176 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Wei J., Winter M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50, 22 (2009)MathSciNetGoogle Scholar
  27. 27.
    Willem M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Centro de Modelamiento Matemático, UMI 2807 CNRS-UChileUniversidad de ChileSantiagoChile

Personalised recommendations