Zeitschrift für angewandte Mathematik und Physik

, Volume 65, Issue 5, pp 977–1002 | Cite as

Criteria for trapped modes in a cranked channel with fixed and freely floating bodies



Trapped modes in the linearized water wave problem are localized free oscillations in an unbounded fluid with a free surface. For sometime, it has been known that certain structures, fixed or freely floating, can support such modes. In this paper, we consider the problem on a channel, which consists of a finite part and two cylindrical outlets into infinity. The finite (bounded) part may contain some submerged and/or surface-piercing bodies. Since the ordinary scattering matrix can by no means contribute any information on trapped modes, we introduce the fictitious scattering operator and present a criterion for the existence of trapped modes. The criterion states that the number of trapped modes is the difference of the multiplicities of the eigenvalue 1 of the fictitious scattering operator and the eigenvalue −i of the scattering matrix.

Mathematics Subject Classification (2010)

Primary 35P25 Secondary 76B15 


Trapped modes Spectral problem Water waves Fictitious scattering operator Steklov–Poincaré operator Artificial boundary condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agoshkov, V.I.: Poincare–Steklov operators and domain decomposition methods in finite dimensional spaces. In: SIAM Proceedings of the First International Symposium on Domain Decomposition Methods, Paris (1987)Google Scholar
  2. 2.
    Aslanyan A., Parnovski L., Vassiliev D.: Complex Resonances in Acoustic Waveguides. Q. J. Mech. Appl. Math. 53, 429–447 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonnet-Ben Dhia A.-S., Joly P.: Mathematical analysis of guided water waves. SIAM J. Appl. Math. 53, 1507–1550 (1993). doi: 10.1137/0153071 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonnet-Bendhia A.-S., Starling F.: Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Meth. Appl. Sci. 17, 305–338 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Birman M.S., Solomyak M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Reidel Publishing Company, Dordrecht (1986)CrossRefGoogle Scholar
  6. 6.
    Euler L.: Principia motus fluidorum. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, Tom VI, 271–311 (1761)Google Scholar
  7. 7.
    Evans D.V., Levitin M., Vassiliev D.: Existence theorems for trapped modes. J. Fluid Mech. 261, 21–31 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garipov R.M.: On the linear theory of gravity waves: the theorem of existence and uniqueness. Arch. Rat. Mech. Anal. 24, 352–362 (1967). doi: 10.1007/BF00253152 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-selfadjoint operators. Transl. Math. Monogr. 18, Am. Math. Soc. (1969) (Translated from Russian)Google Scholar
  10. 10.
    John F.: On the motion of floating bodies I. Comm. Pure Appl. Math. 2(1), 13–57 (1949)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    John F.: On the motion of floating bodies II, simple harmonic oscillations. Comm. Pure Appl. Math. 3, 45–101 (1950)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jones D.S.: The eigenvalues of ∇2 u +  λ u =  0 when the boundary conditions are given on semi-infinite domains. Proc. Camb. Phil. Soc. 49, 668–684 (1953)CrossRefMATHGoogle Scholar
  13. 13.
    Kamotskii, I.V., Nazarov, S.A.: An augmented scattering matrix and exponentially decreasing solutions of an elliptic problem in a cylindrical domain, Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov 264 (2002), 66–82 [English transl.: Journal of Math. Sci., Vol. 111(4), 3657–3666 (2002)]Google Scholar
  14. 14.
    Kuznetsov N.I., Mazya V.G., Vainberg B.R.: Linear Water Waves. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Leis R.: Initial Boundary Value Problems of Mathematical Physics. B.G. Teubner, Stuttgart (1986)CrossRefGoogle Scholar
  16. 16.
    Linton C.M., McIver P.: Embedded trapped modes in water waves and acoustics. Wave Motion 45, 16–29 (2007). doi: 10.1016/j.wavemoti.2007.04.009 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Maniar H.D., Newman J.R.: Wave diffraction by a long array of cylinders. J. Fluid Mech. 339, 309–330 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mei C.C., Stiassnie M., Yue D.K.-P.: Theory and Applications of Ocean Surface Waves. Part 1: Linear Aspects. World Scientific Publishing Co., Singapore (2005)Google Scholar
  19. 19.
    Motygin O.V.: Trapped modes in a linear problem of theory of surface water waves. J. Math. Sci. 173(6), 717–736 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Nazarov, S.A.: A criterion for the existence of decaying solutions in the problem on a resonator with a cylindrical waveguide. Funkt. Anal. i Prilozhen, 40(2), 20–32 (2006) [English transl.: Funct. Anal. Appl., 40(2), 97–107 (2006)]Google Scholar
  21. 21.
    Nazarov, S.A.: Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary. Zh. Vychisl. Mat. i Mat. Fiz. 46(12), 2265–2276 (2006). [English transl.: Comput. Math. and Math. Phys. 46(12), 2164–2175 (2006)]Google Scholar
  22. 22.
    Nazarov, S.A.: A simple method for finding trapped modes in problems of the linear theory of surface waves. Dokl. Ross. Akad. Nauk. 429(6), 746–749 (2009) [English transl.: Doklady Mathematics, 80(3), 914–917 (2009)]Google Scholar
  23. 23.
    Nazarov S.A.: Sufficient conditions for the existence of trapped modes in problems of the linear theory of surface waves. Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov 369, 202–223 (2009)Google Scholar
  24. 24.
    Nazarov, S.A.: Eigenvalues of the Laplace operator with the Neumann conditions at regular perturbed walls of a waveguide. Probl. Mat. Analiz. No. 53. Novosibirsk, 2011, 104–119. [English transl.: Journal of Math. Sci., 172, 555–588 (2011)]Google Scholar
  25. 25.
    Nazarov, S.A.: Incomplete comparison principle in problems about surface waves trapped by fixed and freely floating bodies, Probl. mat. analiz. No. 56, Novosibirsk, 2011, 83–115 [English transl.: Journal of Math. Sci., 175, 309–348 (2011)]Google Scholar
  26. 26.
    Nazarov, S.A.: Trapped waves in a cranked waveguide with hard walls. Acoust. J. 57, 746–754 (2011) [English transl.: Acoustical Physics 57, 764–771 (2011)]Google Scholar
  27. 27.
    Nazarov, S.A.: Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle. Zh. Vychisl. Mat. i Mat. Fiz. 52(3), 521–538 (2012) [English transl.: Comput. Math. and Math. Physics 52, 448–464 (2012)]Google Scholar
  28. 28.
    Nazarov, S.A.: The enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide. to appear in Funkt. Anal. i Prilozhen (English transl.: Funct. Anal. Appl.)Google Scholar
  29. 29.
    Nazarov, S.A., Plamenevskii, B.A.: Radiation principles for self-adjoint elliptic problems. Probl. Mat. Fiz., No. 13, pp. 192–244. Leningrad Univ., Leningrad (1991); RussianGoogle Scholar
  30. 30.
    Nazarov S.A., Plamenevskii B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter, Berlin (1994)CrossRefMATHGoogle Scholar
  31. 31.
    Nazarov S.A., Taskinen J.: On essential and continuous spectra of the linearized water-wave problem in a finite pond. Math. Scand. 106, 1–20 (2009)MathSciNetGoogle Scholar
  32. 32.
    Nazarov, S.A., Taskinen, J.: Double-sided estimates for eigenfrequencies in the John problem for freely floating body. Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov 397, 89–114 (2011) [English transl.: Journal of Math. Sci. 397 (2011)]Google Scholar
  33. 33.
    Nazarov S.A., Videman J.H.: Trapping of water waves by freely floating structures in a channel. Proc. R. Soc. A 467, 3613–3632 (2011)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Pagneux V., Maurel A.: Scattering matrix properties with evanescent modes for waveguides in fluids and solids. J. Acoust. Soc. Am. 116(4), 1913–1920 (2004)CrossRefGoogle Scholar
  35. 35.
    Ursell F.: Trapping modes in the theory of surface waves. Proc. Camb. Phil. Soc. 47(2), 347–358 (1951)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ursell F.: Mathematical aspects of trapping modes in the theory of surface waves. J. Fluid Mech. 183, 421–437 (1987)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Vainberg B.R., Maz’ja V.G.: On the plane problem of the motion of a body immersed in a fluid. Trans. Moscow Math. Soc. 28, 33–55 (1973)Google Scholar
  38. 38.
    Wilcox C.H.: Scattering Theory for Diffraction Gratings. Springer, New York (1979)Google Scholar
  39. 39.
    Wood R.V.: On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396–402 (1902)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Mathematics and Mechanics FacultySt. Petersburg State UniversityStary PeterhofRussia
  2. 2.Mathematics DivisionUniversity of OuluOuluFinland

Personalised recommendations