Thermodynamic forces in single crystals with dislocations

Article

Abstract

A simple model for the evolution of macroscopic dislocation regions in a single crystal is presented. This model relies on maximal dissipation principle within Kröner’s geometric description of the dislocated crystal. Mathematical methods and tools from shape optimization theory provide equilibrium relations at the dislocation front, similarly to previous work achieved on damage modelling (J Comput Phys 33(16):5010–5044, 2011). The deformation state variable is the incompatible strain as related to the dislocation density tensor by a relation involving the Ricci curvature of the crystal underlying elastic metric. The time evolution of the model variables follows from a novel interpretation of the Einstein–Hilbert flow in terms of dislocation microstructure energy. This flow is interpreted as the dissipation of non-conservative dislocations, due to the climb mechanism, modelled by an average effect of mesoscopic dislocations moving normal to their glide planes by adding or removing points defects. The model equations are a fourth-order tensor parabolic equation involving the operator “incompatibility,” here appearing as a tensorial counterpart of the scalar Laplacian. This work encompasses and generalizes results previously announced (C R Acad Sci Paris Ser I 349:923–927, 2011), with in addition a series of physical interpretations to give a meaning to the newly introduced concepts.

Mathematics Subject Classification (2000)

53Z05 74B99 74N20 74P20 80A17 49K20 35Q74 

Keywords

Dislocations Single crystals Thermodynamic model Einstein–Hilbert flow Strain incompatibility Shape optimization Principle of maximal dissipation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya A.: Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2034), 1343–1363 (2013)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Acharya A., Chapman S.J.: Elementary observations on the averaging of dislocation mechanics: dislocation origin of aspects of anisotropic yield and plastic spin. Procedia IUTAM 3(0), 301–313 (2012)CrossRefGoogle Scholar
  3. 3.
    Allaire G.: Conception optimale de structures. Springer, Berlin (2007)MATHGoogle Scholar
  4. 4.
    Allaire G., Jouve F., Van Goethem N.: Damage and fracture evolution in brittle materials by shape optimization methods. J. Comput. Phys. 33(16), 5010–5044 (2011)CrossRefGoogle Scholar
  5. 5.
    Ammari H., Kang H.: Reconstruction of small inhomogeneities from boundary measurements. Lecture notes on mathematics. Springer, Berlin (2004)CrossRefGoogle Scholar
  6. 6.
    Amstutz S., Takahashi T., Vexler B.: Topological sensitivity analysis for time-dependent problems. ESAIM: Control Optim. Calc Var. 14(3), 427–455 (2008)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Berdichevsky V.: Continuum theory of dislocations revisited. Cont. Mech. Therm. 18(9), 195–222 (2006)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cahn J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)CrossRefGoogle Scholar
  9. 9.
    Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. 1. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  10. 10.
    Cahn, R.W.: The discovery of polygonization. In: Dislocations and Properties of Real Materials, pp. 12–14, London, 1983. The Institute of Metals (1985)Google Scholar
  11. 11.
    Cahn, R.W.: Chapter 3: Precursors of materials science. In: Cahn, R.W. (ed.) The Coming of Materials Science, vol. 5 of Pergamon Materials Series, pp. 57–156. Pergamon, New York (2001)Google Scholar
  12. 12.
    Cea J.: Conception optimale ou identification de formes, calcul rapide de la dérivée de la fonction coût. Math. Model. Numer. Anal. 20(3), 371–402 (1986)MATHMathSciNetGoogle Scholar
  13. 13.
    Chow B., Lu P., Ni L.: Hamilton’s Ricci flow. Lectures in contemporary mathematics. AMS Science Press, Rhode Island, USA (2006)Google Scholar
  14. 14.
    Ciarlet P.G.: An introduction to differential geometry with applications to elasticity. Springer, Berlin (2006)Google Scholar
  15. 15.
    Colbois B., Savo A.: Large eigenvalues and concentration. Pac. J. Math. 249(2), 271–290 (2011)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Dautray R., Lions J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 5. Evolution problems I. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  17. 17.
    de Souza Neto E.A., Perić D., Owen D.R.J.: Computational methods for plasticity: theory and applications. Wiley, New York (2009)Google Scholar
  18. 18.
    Delfour, M.C., Zolésio, J.-P.: Shapes and geometries. Metrics, analysis, differential calculus, and optimization. 2nd edn. Advances in Design and Control 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011)Google Scholar
  19. 19.
    Dubrovin B.A., Fomenko A.T., Novikov S.P.: Modern geometry—methods and applications, Part 1 (2nd edn). Cambridge studies in advanced mathematics. Springer, New-York (1992)Google Scholar
  20. 20.
    Dupret, F., Van den Bogaert, N.: Dynamic global simulation of the Czochralski process: I. Principles of the method; II. analysis of the growth of a Ge crystal. J. Cryst. Growth 171(1–2):65–76; 77–93 (1997)Google Scholar
  21. 21.
    Grant C.P.: Spinodal decomposition for the Cahn–Hilliard equation. Commun. Partial Differ. Equ. 18(3-4), 453–490 (1993)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Grinfeld P.: Hadamard’s formula inside and out. J. Optim. Theory Appl. 145(9), 654–690 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Gurtin M.E.: Generalized Ginsburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92, 178–192 (1996)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Gurtin M.E.: Configurational forces as basic concepts of continuum physics. Applied mathematical sciences, 137. Springer, Berlin (2000)Google Scholar
  25. 25.
    Hackl K., Fischer F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464, 117–132 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Henrot, A., Pierre, M.: Variation et optimisation de formes, vol. 48 of Mathématiques and Applications (Berlin) [Mathematics and Applications]. Springer, BerlinGoogle Scholar
  27. 27.
    Hurle, D.T.J., Rudolph, P.: A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors. In: Feigelson, R.S. (eds) 50 years Progress in Crystal Growth, a reprint collection, Elsevier, Amsterdam (2004)Google Scholar
  28. 28.
    Kleinert, H.: Gauge fields in condensed matter. Vol. 1, World Scientific, Singapore (1989)Google Scholar
  29. 29.
    Kleinert H.: New gauge symmetry in gravity and the evanescent role of torsion. Electron. J. Theor. Phys. 7(24), 28–298 (2010)Google Scholar
  30. 30.
    Kozono H., Yanagisawa T.: L r-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58(4), 1853–1920 (2009)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Kröner, E.: Continuum theory of defects. In: Balian, R. (eds) Physiques des défauts, Les Houches session XXXV (Course 3), North-Holland, Amsterdam (1980)Google Scholar
  32. 32.
    Kröner E.: The internal mechanical state of solids with defects. Int. J. Solids Struct. 29(14/15), 1849–1857 (1992)CrossRefMATHGoogle Scholar
  33. 33.
    Lazar M., Hehl F.W.: Cartan’s spiral staircase in physics and, in particular, in the gauge theory of dislocations. Found. Phys. 40, 1298–1325 (2010)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Mandel J.: Plasticité Classique et Viscoplasticité. Springer, Berlin (1973)Google Scholar
  35. 35.
    Maugin G.A.: The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge (1992)CrossRefMATHGoogle Scholar
  36. 36.
    Maugin G.A.: Geometry and thermomechanics of structural rearrangements: Ekkehart Kröner’s legacy. ZAMM 83(2), 75–84 (2003)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Maugin G.A.: Material forces: concepts and applications. Appl. Mech. Rev. 48(3), 213–245 (2008)Google Scholar
  38. 38.
    Eliott C.M., Garcke H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Müller G., Friedrich J.: Challenges in modeling of bulk crystal growth. J. Cryst. Growth 266(1-3), 1–19 (2004)CrossRefGoogle Scholar
  40. 40.
    Müller, G., Métois, J.J., Rudolph, P. (eds): Crystal growth-from fundamentals to technology. Elsevier, Amsterdam (2004)Google Scholar
  41. 41.
    Müller R.: Differential Harnack inequalities and the Ricci flow. European Mathematical Society Publishing House, Zurich, Switzerland (2006)CrossRefMATHGoogle Scholar
  42. 42.
    Murat F., Simon S.: Etudes de problèmes d’optimal design. Springer, Berlin (1976)Google Scholar
  43. 43.
    Zaiser, M.: Dislocation patterns in crystalline solids—phenomenology and modelling. In: Müller, G., Métois, J.J., Rudolph, P. (eds) Crystal growth-from fundamentals to technology, Elsevier, Amsterdam (2004)Google Scholar
  44. 44.
    Neff P., Pauly D., Witsch K.-J.: Maxwell meets Korn: a new coercive inequality for tensor fields in \({\mathbb{R}^{N \times N}}\) with square-integrable exterior derivative. Math. Methods Appl. Sci. 35(1), 65–71 (2012)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Onsager L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)CrossRefGoogle Scholar
  46. 46.
    Pantz O.: Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. Paris Ser. I 341, 333–337 (2005)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Philibert, J.: Atom movements, diffusion and mass transport in solids. Monographies de physique. les éditions de physique, les Ulis, France (1988)Google Scholar
  48. 48.
    Temam R.: Infinite dimensional dynamical systems in mechanics and physics. 2nd edn. Springer, New York (1997)CrossRefMATHGoogle Scholar
  49. 49.
    Vanden Bogaert N., Dupret F.: Modelling Bridgman and Czochralski growth. Handb. Crys. Growth 2(15), 875–1010 (1994)Google Scholar
  50. 50.
    Van Goethem, N.: The non-Riemannian dislocated crystal: a tribute to Ekkehart Kröner’s (1919–2000). J. Geom. Mech. 2(3), 303–320 (2010)Google Scholar
  51. 51.
    Van Goethem N.: Shape optimization for a time-dependent 4th-order equation in a dislocation model. C. R. Acad. Sci. Paris Ser. I 340 349, 923–927 (2011)CrossRefMATHGoogle Scholar
  52. 52.
    Van Goethem N.: Strain in compatibility in single crystals: Kröner’s formula revisited. J. Elast. 103(1), 95–111 (2011)CrossRefMATHGoogle Scholar
  53. 53.
    Van Goethem N.: A multiscale model for dislocations: from mesoscopic elasticity to macroscopic plasticity. ZAMM 92(7), 514–535 (2012)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Van Goethem, N.: Fields of bounded deformation for mesoscopic dislocations. Math. Mech. Solids doi:10.1177/1081286513479196 (2013)
  55. 55.
    Van Goethem N., de Potter A., Vanden Bogaert N., Dupret F.: Dynamic prediction of point defects in Czochralski silicon growth. An attempt to reconcile experimental defect diffusion coefficients with the V/G criterion. J. Phys. Chem. Solids 69, 320–324 (2008)CrossRefGoogle Scholar
  56. 56.
    Van Goethem, N., Dupret, F.: A distributional approach to the geometry of 2D dislocations at the continuum scale. Ann. Univ. Ferrara 58(2), 407–434 (2012)Google Scholar
  57. 57.
    Van Goethem N., Novotny A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33(16), 1978–1994 (2010)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.SISSATriesteItalia
  2. 2.Departamento de Matemática, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations