Advertisement

Zeitschrift für angewandte Mathematik und Physik

, Volume 64, Issue 6, pp 1689–1698 | Cite as

Instability of the magnetohydrodynamics system at vanishing Reynolds number

  • Ismaël BouyaEmail author
Article
  • 108 Downloads

Abstract

The aim of this note is to study the dynamo properties of the magnetohydrodynamics system at vanishing R m . Improving the analysis in Gérard-Varet (SIAM J Math Anal 37(3):815–840, 2006), we shall establish a generic Lyapunov instability result.

Mathematics Subject Classification

35Q30 76E25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexakis A.: Searching for the fastest dynamo: Laminar ABC flows. Phys. Rev. E 84(2), 026321 (2011)CrossRefGoogle Scholar
  2. 2.
    Bouya, I.: Instability of the Magnetohydrodynamics System at Small but Finite Reynolds Number. SIAM J. Math. Anal. (2012, accepted)Google Scholar
  3. 3.
    Fauve S., Petrelis F.: The dynamo effect. Peyresq Lect. Nonlinear Phenom. 2, 1–64 (2003)CrossRefGoogle Scholar
  4. 4.
    Friedlander S., Pavlović N., Shvydkoy R.: Nonlinear instability for the Navier–Stokes equations. Commun. Math. Phys. 264(2), 335–347 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Friedlander, S., Strauss, W., Vishik, M.M.: Nonlinear instability in an ideal fluid. In: Annales de l’Institut Henri Poincare/Analyse Non lineaire, volume 14, pp. 187–209. Elsevier, Amsterdam (1997)Google Scholar
  6. 6.
    Gérard-Varet D.: Oscillating solutions of incompressible magnetohydrodynamics and dynamo effect. SIAM J. Math. Anal. 37(3), 815–840 (2006)CrossRefGoogle Scholar
  7. 7.
    Gilbert A.D.: Dynamo theory. Handb. Math. Fluid Dyn. 2(1), 355–441 (2003)CrossRefGoogle Scholar
  8. 8.
    Guo, Y., Strauss, W.: Nonlinear instability of double-humped equilibria. In: Annales de l’Institut Henri Poincaré. Analyse non linéaire, volume 12, pp. 339–352. Elsevier, Amsterdam (1995)Google Scholar
  9. 9.
    Larmor, J.: How could a rotating body such as the sun become a magnet. Rep. Brit. Assoc. Adv. Sci. 159, 412 (1919)Google Scholar
  10. 10.
    Otani N.: A fast kinematic dynamo in two-dimensional time-dependent flows. J. Fluid Mech. 253, 327–340 (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Parker E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Soward A.: On the role of stagnation points and periodic particle paths in a two-dimensional pulsed flow fast dynamo model. Physica D: Nonlinear Phenom. 76(1–3), 181–201 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Soward A.M.: Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267–295 (1987)CrossRefzbMATHGoogle Scholar
  14. 14.
    Stieglitz R., Müller U.: Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561 (2001)CrossRefGoogle Scholar
  15. 15.
    Temam R.: Navier–Stokes Equations: Theory and Numerical Analysis. American Mathematical Society, Providence (2001)Google Scholar
  16. 16.
    Vishik M.M.: Magnetic field generation by the motion of a highly conducting fluid. Geophys. Astrophys. Fluid Dyn. 48(1), 151–167 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.UMR 7586 Institut de mathématiques de Jussieu—Analyse fonctionnelleParisFrance

Personalised recommendations