Advertisement

Zeitschrift für angewandte Mathematik und Physik

, Volume 64, Issue 5, pp 1413–1442 | Cite as

Multibump solutions for discrete periodic nonlinear Schrödinger equations

  • Shiwang Ma
  • Zhi-Qiang Wang
Article

Abstract

In this paper, we study the existence of multibump solutions for discrete nonlinear Schrödinger equations with periodic potentials. We first reduce the existence of multibump homoclinic solutions to the existence of an isolated homoclinic solution with a nontrivial critical group. Then, we study the existence of homoclinics with nontrivial critical groups for both superlinear and asymptotically linear discrete periodic nonlinear Schrödinger equations, and we provide simple sufficient conditions for the existence of homoclinics with nontrivial critical groups in the positive definite case. As an application, we get, without any symmetry assumptions, infinitely many geometrically distinct homoclinic solutions with exponential decay at infinity.

Mathematics Subject Classification (2000)

35Q55 35Q51 39A12 39A70 78A40 

Keywords

Discrete Schrödinger equation with periodic potential Homoclinic solution Multibump solution Critical group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann N., Weth T.: Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting. Commun. Contemp. Math. 7, 269–298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alfimov G.N., Brazhnyi V.A., Konotop V.V.: On classification of intrinsic localized modes for the discrete nonlinear Schrödinger equation. Phys. D 194, 127–150 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arioli G., Szulkin A., Zou W.: Multibump solutions and critical groups. Trans. Am. Math. Soc. 361, 3159–3187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berti M., Bolle P.: Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. 176(4), 323–378 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bidégary-Fesquet B., Saut J.-C.: On the propagation of an optical wave in a photorefractive medium. Math. Models Methods Appl. Sci. 17, 1883–1904 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chang K.C.: Infinite Dimensional Morse Theory and Multiple Solutions Problems. Birkhäuser, Boston (1993)CrossRefGoogle Scholar
  7. 7.
    Chen S.: Multi-bump solutions for a strongly indefinite semilinear Schrödinger equation without symmetry or convexity assumptions. Nonlinear Anal. TMA 68, 3067–3102 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Coti Zelati V., Ekeland I., Séré E.: A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann. 288, 133–160 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coti Zelati V., Rabinowitz P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4, 693–727 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Coti Zelati V., Rabinowitz P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \({\mathbb{R}^n}\) . Comm. Pure Appl. Math. 45, 1217–1269 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Coti Zelati V., Rabinowitz P.H.: Multibump periodic solutions of a family of Hamiltonian systems. Topol. Methods Nonlinear Anal. 4, 31–57 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dancer E.N.: Degenerate critical points, homotopy indices and Morse inequalities. J. Reine Angew. Math. 350, 1–22 (1984)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ding Y., Luan S.: Multiple solutions for a class of nonlinear Schrödinger equations. J. Differ. Equ. 207, 423–457 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ding Y., Lee C.: Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems. Nonlinear Anal. TMA 71, 1395–1413 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Flach S., Gorbach A.: Discrete breathers—advances in theory and applications. Phys. Rep. 467, 1–116 (2008)CrossRefGoogle Scholar
  16. 16.
    Henning D., Tsironis G.P.: Wave transmission in nonlinear lattices. Phys. Rep. 309, 333–432 (1999)CrossRefGoogle Scholar
  17. 17.
    Kevrekidis P.G., Rasmussen K.Ø., Bishop A.R.: The discrete nonlinear Schrödinger equation: a survey of recent results. J. Modern Phys. B 15, 2833–2900 (2001)CrossRefGoogle Scholar
  18. 18.
    Khare A., Rasmussen K., Samuelson M., Saxtena A.: Exact solutions of the saturable discrete nonlinear Schrödinger equation. J. Phys. A 38, 807–814 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kryszewski W., Szulkin A.: An infinite-dimensional Morse theory with applications. Trans. Am. Math. Soc. 349, 3181–3234 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li Y.Q., Wang Z.-Q., Zeng J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 829–837 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lions P.H.: The concentration-compactness principle in the calculus of variations: the locally compact cases, Part I and Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)zbMATHGoogle Scholar
  22. 22.
    Liu Z., Wang Z.-Q.: Multi-bump, nodal solutions having a prescribed number of nodal domains. I. Annales de l’Institut Henri Poincaré—Analyse non linéaire 22, 597–608 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian System, Appl. Math. Sci., vol. 74. Springer, New York (1989)Google Scholar
  24. 24.
    Melvin T.R.O., Champneys A.R., Kevrekidis P.G., Cuevas J.: Traveling solitary waves in discrete Schrödinger equations with saturable nonlinearity: existence, stability and dynamics. Phys. D 237, 551–567 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pankov A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pankov A.: Gap solitons in periodic discrete nonlinear Schrödinger equations. Nonlinearity 19, 27–40 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pankov A.: Gap solutions in periodic nonlinear Schrödinger equations II: a generalized Nehari manifold approach. Discret. Contin. Dyn. Syst. 19, 419–430 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pankov A., Rothos V.: Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity. Proc. R. Soc. Lond. Ser. A 464, 3219–3236 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pankov A.: Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities. J. Math. Anal. Appl. 371, 254–265 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pelinovsky D.: Translationally invariant nonlinear Schrödinger lattices. Nonlinearity 19, 2695–2716 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Qin W., Xiao X.: Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices. Nonlinearity 20, 2305–2317 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rothos V.M., Kevrekidis P.G.: Stability of waves in multi-component DNLS system. J. Phys. A 40, 4553–4566 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rothos V.M., Nistazakis H.E., Kevrekidis P.G., Frantzeskakis D.J.: Stability of localized structures in generalized DNLS equations near the anti-continuum limit. J. Phys. A 42, 025207 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Séré E.: Looking for the Bernoulli shift. Ann. IHP, Analyse Non Linéaire 10, 561–590 (1993)zbMATHGoogle Scholar
  35. 35.
    Struwe M.: Variational Methods. 2nd edn. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  36. 36.
    Stuart C.: Guidance properties of nonlinear planar waveguides. Arch. Rat. Mech. Anal. 125, 145–200 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Szlenk W.: An Introduction to The Theory of Smooth Dynamical Systems. Polish Scientific Publishers, Warsaw and Wiley, New York (1984)zbMATHGoogle Scholar
  38. 38.
    Szulkin A., Weth T.: Ground state solutions for some indefinite problems. J. Funct. Anal. 12, 3802–3822 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. Amer. Math. Soc., Providence (2000)Google Scholar
  40. 40.
    Heerden F.: Homoclinic solutions for a semilinear elliptic equation with an asymptotically linear nonlinearity. Calc. Var. 20, 431–455 (2004)CrossRefzbMATHGoogle Scholar
  41. 41.
    Wang Z.-Q.: Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations. J. Differ. Equ. 159, 102–137 (1999)CrossRefzbMATHGoogle Scholar
  42. 42.
    Wiggins S.: Global Bifurcations and Chaos. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  43. 43.
    Willem M.: Minimax Theorems. Birkhäuser, Boston (1996)CrossRefzbMATHGoogle Scholar
  44. 44.
    Yang M., Chen W., Ding Y.: Solutions for discrete Schrödinger equations with spectrum 0. Acta Appl. Math. 110, 1011–1036 (2010)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zhang G., Liu F.: Existence of breather solutions of the DNLS equations with unbounded potentials. Nonlinear Anal. 71, e786–e792 (2009)CrossRefzbMATHGoogle Scholar
  46. 46.
    Zhang G.: Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials. J. Math. Phys. 50, 013505 (2009)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zhou Z., Yu J., Chen Y.: On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity. Nonlinearity 23, 1727–1740 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zhou Z., Yu J.: On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J. Differ. Equ. 249, 1199–1212 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.School of Mathematical Sciences and LPMCNankai UniversityTianjinPeople’s Republic of China
  2. 2.Chern Institute of Mathematics and LPMCNankai UniversityTianjinPeople’s Republic of China
  3. 3.Department of Mathematics and StatisticsUtah State UniversityLoganUSA

Personalised recommendations