Zeitschrift für angewandte Mathematik und Physik

, Volume 64, Issue 4, pp 1267–1278 | Cite as

Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation



In this paper, we consider a dynamical model of population biology which is of the classical Fisher type, but the competition interaction between individuals is nonlocal. The existence, uniqueness, and stability of the steady state solution of the nonlocal problem on a bounded interval with homogeneous Dirichlet boundary conditions are studied.

Mathematics subject classification (2010)

35K57 35B32 35B35 35B06 35Q92 92D40 


Nonlocal influence Reaction-diffusion equation Logistic equation Steady state solution Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allegretto, W., Nistri, P.: On a class of nonlocal problems with applications to mathematical biology. In: (Halifax, NS, 1997) Differential equations with applications to biology, pp. 1–14, Fields Inst. Commun. 21, Amer. Math. Soc., Providence, RI (1999)Google Scholar
  2. 2.
    Apreutesei N., Ducrot A., Volpert V.: Travelling waves for integro-differential equations in population dynamics. Discrete Contin. Dyn. Syst. Ser. B 11, 541–561 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bates, P.W.: On some nonlocal evolution equations arising in materials science. In nonlinear dynamics and evolution equations, pp. 13–52. Fields Inst. Commun. 48, Amer. Math. Soc., Providence, RI (2006)Google Scholar
  4. 4.
    Bates, P., Chen, F.: Periodic traveling waves for a nonlocal integro-differential model. Electron. J. Differ. Equ. 26, 19 (1999)Google Scholar
  5. 5.
    Bates P.W., Chmaj A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Statist. Phys. 95, 1119–1139 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bates P.W., Fife P.C., Ren X., Wang X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bates P.W., Zhao G.: Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl. 332, 428–440 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Davidson F.A., Dodds N.: Spectral properties of non-local differential operators. Appl. Anal. 85(6-7), 717–734 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Davidson, F.A., Dodds, N.: Spectral properties of non-local uniformly-elliptic operators. Electron. J. Differ. Equ. 126, 15 (2006)Google Scholar
  11. 11.
    Dancer E.N.: On the structure of solutions of nonlinear eigenvalve problems. Indiana Univ. Math. J. 23, 1069–1076 (1974)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Davidson F.A., Dodds N.: Existence of positive solutions due to non-local interactions in a class of nonlinear boundary value problems. Methods Appl. Anal. 14(1), 15–27 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Fisher R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)CrossRefGoogle Scholar
  14. 14.
    Freitas P.: Bifurcation and stability of stationary solutions of nonlocal scalar reaction-diffusion equations. Jour. Dyna. Diff. Equa. 6, 613–628 (1994)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Freitas P.: A nonlocal Sturm-Liouville eigenvalue problem. Proc. Royal Soc. Edin. 124A, 169–188 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Freitas, P.: Nonlocal reaction-diffusion equations. In: (Halifax, NS, 1997) Differential equations with applications to biology, pp. 187–204. Fields Inst. Commun. 21, Amer. Math. Soc., Providence, RI, 1999Google Scholar
  17. 17.
    Fuentes M.A., Kuperman M.N., Kenkre V.M.: Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91, 158104 (2003)CrossRefGoogle Scholar
  18. 18.
    Fuentes M.A., Kuperman M.N., Kenkre V.M.: Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. J. Phys. Chem. B 108, 10505–10508 (2004)CrossRefGoogle Scholar
  19. 19.
    Furter J., Grinfeld M.: Local vs. nonlocal interactions in population dynamics. J. Math. Biol. 27, 65–80 (1989)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gidas B., Ni W.-M., Nirenberg L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Gourley S.A.: Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol. 41, 272–284 (2000)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Gourley, S.A., Wu, J.: Delayed non-local diffusive systems in biological invasion and disease spread. In: Nonlinear dynamics and evolution equations, pp. 137–200. Fields Inst. Commun. 48 Amer. Math. Soc., Providence, RI (2006)Google Scholar
  23. 23.
    Huang W.: Uniqueness of the bistable traveling wave for mutualist species. J. Dynam. Differ. Equ. 13(1), 147–183 (2001)MATHCrossRefGoogle Scholar
  24. 24.
    Kenkre V.M.: Results from variants of the fisher equation in the study of epidemics and bacteria. Physica A 342, 242–248 (2004)CrossRefGoogle Scholar
  25. 25.
    Kenkre V.M., Kuperman M.N.: Applicability of the Fisher equation to bacterial population dynamics. Phys. Rev. E 67, 051921 (2003)CrossRefGoogle Scholar
  26. 26.
    Kolmogoroff A., Petrovsky I., Piscounoff N.: Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. (French) Moscow Univ. Bull. Math. 1, 1–25 (1937)Google Scholar
  27. 27.
    Kot M.: Elements of mathematical ecology. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  28. 28.
    Liu P., Shi J.P., Wang Y.W.: Imperfect transcritical and pitchfork bifurcations. J. Func. Anal. 251(2), 573–600 (2007)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Murray, J.D.: Mathematical biology. Third edition. Interdisciplinary Applied Mathematics. 17, 18 I. An introduction. II. Spatial models and biomedical applications. Springer, New York (2003)Google Scholar
  30. 30.
    Rabinowitz, P.H.: A nonlinear Sturm-Liouville theorem. Japan-United States seminar on ordinary differential and functional equations (Kyoto, 1971), pp. 182–192. Lecture notes in Math. 243, Springer, Berlin (1971)Google Scholar
  31. 31.
    Rabinowitz P.H.: Some global results for nonlinear eigenvalue problems. J. Func. Anal. 7, 487–513 (1971)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Shi J.: Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models. Front. Math. in China 4, 407–424 (2009)MATHCrossRefGoogle Scholar
  33. 33.
    Shi J., Wang X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)MATHCrossRefGoogle Scholar
  34. 34.
    So J., Wu J., Zou X.: A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 1841–1853 (2001)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Y.Y.Tseng Functional Analysis Research CenterHarbin Normal UniversityHarbinPeople’s Republic of China
  2. 2.Department of MathematicsHeihe UniversityHeihePeople’s Republic of China
  3. 3.Department of MathematicsCollege of William and MaryWilliamsburgUSA

Personalised recommendations