Zeitschrift für angewandte Mathematik und Physik

, Volume 64, Issue 4, pp 1145–1159 | Cite as

Stability of an abstract system of coupled hyperbolic and parabolic equations

Article

Abstract

In this paper, we provide a complete stability analysis for an abstract system of coupled hyperbolic and parabolic equations
$$\begin{array}{ll}\;\;u_{tt} = -Au + \gamma A^{\alpha} \theta,\\ \quad \theta_t = -\gamma A^{\alpha}u_t - kA^{\beta}\theta,\\ u(0) = u_0, \quad u_t(0) = v_0, \quad \theta(0) = \theta_0\end{array}$$
where A is a self-adjoint, positive definite operator on a Hilbert space H. For \({(\alpha,\beta) \in [0,1] \times [0,1]}\) , the region of exponential stability had been identified in Ammar-Khodja et al. (ESAIM Control Optim Calc Var 4:577–593,1999). Our contribution is to show that the rest of the region can be classified as region of polynomial stability and region of instability. Moreover, we obtain the optimality of the order of polynomial stability.

Mathematics Subject Classification (2000)

35B40 47D03 93D05 

Keywords

Hyperbolic–parabolic equation Exponentialstability Polynomial stability Semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammar-Khodja F., Bader A., Benabdallah A.: Dynamic stabilization of systems via decoupling techniques. ESAIM Control Optim. Calc. Var. 4, 577–593 (1999)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alabau F., Cannarsa P., Komornik V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2, 127–150 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ammari K., Tucsnak M.: Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM COCV 6, 361–386 (2001)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bátkai A., Engel K., Prüss J., Schnaubelt R.: Polynomial stability of operator semigroups. Math. Nachr. 279, 1425–1440 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Borichev A., Tomilov Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen G.: Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17(1), 66–81 (1979)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chen S., Triggiani R.: Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136(1), 15–55 (1989)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chen S., Triggiani R.: Gevrey class semigroups arising from elastic systems with gentle dissipation: the case \({0 < \alpha < \frac{1}{2}}\) . Proc. Am. Math. Soc. 110(2), 401–415 (1990)MathSciNetMATHGoogle Scholar
  9. 9.
    Denk, R., Racke, R.: L p-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differ. Equ. 48, 1–16 (2006)Google Scholar
  10. 10.
    Hansen S.: Exponential energy decay in a linear thermoelastic rod. J. Math. Anal. Appl. 167(2), 429–442 (1992)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Liu Z., Rao B.: Frequecy domain characterization of rational decay rate for solution of linear evolution equations. ZAMP 56(4), 630–644 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Liu Z., Rao B.: Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J. Math. Anal. Appl. 335(2), 860–881 (2007)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Liu Z., Yong J.: Qualitative properties of certain C 0 semigroups arising in elastic systems with various dampings. Adv. Differ. Equ. 3, 643–686 (1998)MathSciNetMATHGoogle Scholar
  14. 14.
    Liu Z., Zheng S.: Semigroups Associated with Dissipative Systems. Chapman and Hall/CRC, London (1999)MATHGoogle Scholar
  15. 15.
    Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)MATHCrossRefGoogle Scholar
  16. 16.
    Muñoz Rivera J.E., Racke R.: Magneto-thermo-elasticitylarge-time behavior for linear systems. Adv. Differ. Equ. 6(3), 359–384 (2001)MATHGoogle Scholar
  17. 17.
    Muñoz Rivera J.E., Racke R.: Large solutions and smoothing properties for nonlinear thermoelastic systems. J. Differ. Equ. 127, 454–483 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Racke R.: Instability of coupled systems with delay. Connun. Pure Appl. Anal. 11(5), 1753–1773 (2012)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Russell D.: A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173(2), 339–358 (1993)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of Mathematics and StatisticsUniversity of MinnesotaDuluthUSA

Personalised recommendations