Infinite dimensional Lie algebra associated with conformal transformations of the two-point velocity correlation tensor from isotropic turbulence

Article

Abstract

We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space \({\mathbb{R}^3}\) with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.

Mathematics Subject Classification (2010)

Primary 76F05 Secondary 76F55 53B21 53B50 

Keywords

Isotropic turbulence Two-point correlation tensor Pseudo-Riemannian metric Functional of length Equivalencetransformation Witt algebra Differential invariants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grebenev V.N., Oberlack M.: Geometric realization of the two-point correlation tensor for isotropic turbulence. J. Nonlinear Math. Phys. 18, 109–120 (2011)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Head M.R., Bandyopadhyay P.: New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297–338 (1981)CrossRefGoogle Scholar
  3. 3.
    Bernard P.S.: The harpin vortex illusion. J. Phys. Conf. Ser. 318, 062004 (2011)CrossRefGoogle Scholar
  4. 4.
    Grebenev, V.N., Oberlack M.: A geometry of the correlation space and a nonlocal degenerate parabolic equation from isotropic turulence. ZAMM. doi:1010002/zamm.201100021 (to appear)
  5. 5.
    Falkovich G.: Conformal invariance in hydrodynamics. Russ. Math. Surv. 62(3), 492–510 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bernard D., Boffetta G., Celani A., Falkovich G.: Conformal invariance in two-dimensional turbulence. Nat. Phys. 2, 124–127 (2006)CrossRefGoogle Scholar
  7. 7.
    Monin A.S., Yaglom A.M.: Statistical Hydromechanics. Gidrometeoizdat, St.-Petersburg (1994)Google Scholar
  8. 8.
    Rotta, J.C.: Turbulente Strömungen. Teubner (1972)Google Scholar
  9. 9.
    Hinze J.O.: Tutbulence. McGraw-Hill, New York (1959)Google Scholar
  10. 10.
    von Kármán T., Howarth L.: On the statistical theory of isotropic turbulence. Proc. R. Soc. A 164, 192–215 (1938)CrossRefGoogle Scholar
  11. 11.
    Taylor G.: Diffusion by continuous movements. Proc. R. Math. Soc. 20, 196–212 (1921)MATHGoogle Scholar
  12. 12.
    Pope S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23–63 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kamyshanskij N.R., Solodovnikov A.S.: Semireducible analytic spaces “in the large”. Russ. Math. Surv. 35(5), 1–56 (1980)MATHCrossRefGoogle Scholar
  14. 14.
    Rubinstein J.H., Sinclair R.: Visualizing Ricci flow of manifolds of revolution. Exper. Math. 14, 285–298 (2005)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Eisenhart L.P.: Riemannian Geometry. Princeton University Press, Princeton (1926)MATHGoogle Scholar
  16. 16.
    Megrabov A.G.: Group spliting and Lax representation. Dokl. Math. 67(3), 335–349 (2003)Google Scholar
  17. 17.
    Meleshko S.V.: Homogeneous autonomic systems with three independent variables. J. Appl. Math. Mech. 58, 857–863 (1994)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lavrentjev A.M., Shabat B.V.: Problems of Hydrodynamics. Nauka, Moscow (1973)Google Scholar
  19. 19.
    Schottenloher, M.: A Mathematical Introduction to Conformal Field Theory. Lectures Notes in Physics, vol. 759. Springer, Berlin (2008).Google Scholar
  20. 20.
    Ovsynnikov L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978)Google Scholar
  21. 21.
    Sabitov I.K.: Isometric transformation of a surface inducing conformal maps of the surface into itself. Sb. Math. 189(1), 111–132 (1998)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vekua I.N.: Generalized Analytical Functions. Nauka, Moscow (1988)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Russian Academy of ScienceInstitute of Computational TechnologiesNovosibirskRussia
  2. 2.Department of Mechanical EngineeringTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Institute of Mathematics and StatisticsUniversity of Sao PauloSao PauloBrazil

Personalised recommendations