The multiple nature of concentrated interactions in second-gradient dissipative liquids

Article

Abstract

It is well known that second-gradient continuum mechanical theories allow for the appearance of concentrated stresses along the edges of piecewise smooth material surfaces, but this is not the sole example of concentrated interaction. Two additional kinds of concentrated interaction are shown to take place in some second-gradient incompressible dissipative fluids: the adherence to one-dimensional immersed bodies and the capability of sustaining concentrated external body forces. These three phenomena turn out to be distinct and independent. This feature is explicitly discussed in two benchmark problems, and the different mathematical origins of each concentrated interaction are explained.

Mathematics Subject Classification

74A30 76A05 74A10 

Keywords

Concentrated interaction Second-gradient fluid Edge force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.A., Fournier J.J.F.: Sobolev spaces. Elsevier, Amsterdam (2003)MATHGoogle Scholar
  2. 2.
    Das S.K., Choi S.U.S., Yu W., Pradeep T.: Nanofluids: Science and Technology. Wiley, Hoboken (2008)Google Scholar
  3. 3.
    Degiovanni M., Marzocchi A., Musesti A.: Edge-force densities and second-order powers. Ann. Mat. Pura Appl. 185(1), 81–103 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à à la D’Alembert”. Z. Angew. Math. Phys. (ZAMP). doi: 10.1007/s00033-012-0197-9
  6. 6.
    Forte S., Vianello M.: On surface stresses and edge forces. Rend. Mat. Appl. 8(3), 409–426 (1988)MathSciNetMATHGoogle Scholar
  7. 7.
    Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513–554 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fried E., Gurtin M.E.: A continuum mechanical theory for turbulence: a generalized navier–stokes-α equation with boundary conditions. Theor. Comput. Fluid Dyn. 22, 433–470 (2008)MATHCrossRefGoogle Scholar
  9. 9.
    Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. I. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)MathSciNetMATHGoogle Scholar
  10. 10.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)Google Scholar
  11. 11.
    Giusteri G., Marzocchi A., Musesti A.: Three-dimensional nonsimple viscous liquids dragged by one-dimensional immersed bodies. Mech. Res. Commun. 37(7), 642–646 (2010)CrossRefGoogle Scholar
  12. 12.
    Giusteri G., Marzocchi A., Musesti A.: Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures. Acta Mech. 217, 191–204 (2011)MATHCrossRefGoogle Scholar
  13. 13.
    Lebedev N.N.: Special Functions and Their Applications. Dover Publications Inc., New York (1972)MATHGoogle Scholar
  14. 14.
    Musesti A.: Isotropic linear constitutive relations for nonsimple fluids. Acta Mech. 204, 81–88 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Noll W., Virga E.G.: On edge interactions and surface tension. Arch. Ration. Mech. Anal. 111(1), 1–31 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information. Contin. Mech. Thermodyn. 22(3), 163–176 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations