Riemann problem for the isentropic relativistic Chaplygin Euler equations

Article

Abstract

This paper studies the Riemann problem of the isentropic relativistic Euler equations for a Chaplygin gas. The solutions exactly include five kinds. The first four consist of different contact discontinuities while the rest involves delta-shock waves. Under suitable generalized Rankine–Hugoniot relation and entropy condition, the existence and uniqueness of delta-shock solutions are established.

Mathematics Subject Classification (2010)

35L65 35L45 

Keywords

Isentropic relativistic Euler equations Chaplygin gas Delta-shock wave Generalized Rankine–Hugoniot relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liang E.: Relativistic simple waves: shock damping and entropy production. Astrophys. J. 211, 361–376 (1977)CrossRefGoogle Scholar
  2. 2.
    Taub A.: Approximate solutions of the Einstein equations for isentropic motions of plane-symmetric distributions of perfect fluids. Phys. Rev. 107, 884–900 (1957)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Pant V.: Global entropy solutions for isentropic relativistic fluid dynamics. Commun. Partial Differ. Equ. 21, 1609–1641 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Chen G., LeFloch P.: Compressible Euler equations with general pressure law. Arch. Rational Mech. Anal. 153, 221–259 (2000)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen G., LeFloch P.: Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal. 166, 81–98 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen G., Li Y.: Relativistic Euler equations for isentropic fluids: stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys. 55, 903–926 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Li Y., Shi Q.: Global existence of the entropy solutions to the isentropic relativistic Euler equations. Comm. Pure Appl. Anal. 4, 763–778 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Li Y., Geng Y.: Global limits of entropy solutions to isentropic relativistic Euler equations. Z. Angew. Math. Phys. 57, 960–983 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. Longman Scientific and Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, No.41. Essex (1989)Google Scholar
  10. 10.
    Chaplygin S.: On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904)Google Scholar
  11. 11.
    Tsien H.: Two dimensional subsonic flow of compressible fluids. J. Aeron. Sci. 6, 399–407 (1939)MathSciNetGoogle Scholar
  12. 12.
    von Karman T.: Compressibility effects in aerodynamics. J. Aeron. Sci. 8, 337–365 (1941)MATHGoogle Scholar
  13. 13.
    Setare M.: Interacting holographic generalized Chaplygin gas model. Phys. Lett. B 654, 1–6 (2007)CrossRefGoogle Scholar
  14. 14.
    Cruz N., Lepe S., Pen̈a F.: Dissipative generalized Chaplygin gas as phantom dark energy physics. Phys. Lett. B 646, 177–182 (2007)CrossRefGoogle Scholar
  15. 15.
    Setare M.: Holographic Chaplygin gas model. Phys. Lett. B 648, 329–332 (2007)CrossRefGoogle Scholar
  16. 16.
    Bilic, N., Tupper, G., Viollier, R.: Dark Matter, Dark Energy and the Chaplygin Gas. arXiv:astro-ph/0207423Google Scholar
  17. 17.
    Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V.: The Chaplygin Gas as a Model for Dark Energy. arXiv:gr-qc/040362Google Scholar
  18. 18.
    Brenier Y.: Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326–S331 (2005)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Guo L., Sheng W., Zhang T.: The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal. 9, 431–458 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Tan D., Zhang T.: Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (I) Four-J cases. J. Differ. Equ. 111, 203–254 (1994)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Tan D., Zhang T., Zheng Y.: Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differ. Equ. 112(1), 1–32 (1994)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Keyfit B., Kranzer H.: Spaces of weighted measures for conservation laws with singular shock solutions. J. Differ. Equ. 118, 420–451 (1995)CrossRefGoogle Scholar
  23. 23.
    Sheng W., Zhang T.: The Riemann problem for transportation equation in gas dynamics. Mem. Am. Math. Soc. 137(654), 1–77 (1999)MathSciNetGoogle Scholar
  24. 24.
    Li, J., Zhang, T.: Generalized Rankine–Hugoniot relations of delta shocks in solutions of transportation equations. In: Chen G.-Q. et al. (eds.) Advances in Nonlinear Partial Differential Equations and Related Areas (Beijing, 1997), pp: 219–232. World Scientific publishing, River Edge (1998)Google Scholar
  25. 25.
    Yang H.: Riemann problems for a class of coupled hyperbolic systems of conservation laws. J. Differ. Equ. 159, 447–484 (1999)MATHCrossRefGoogle Scholar
  26. 26.
    Chen G., Liu H.: Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations. SIAM J. Math. Anal. 34, 925–938 (2003)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Chen G., Liu H.: Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 189, 141–165 (2004)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Danilov V., Shelkovich V.: Dynamics of propagation and interaction of δ-shock waves in conservation laws systems. J. Differ. Equ. 221, 333–381 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shelkovich V.: The Riemann problem admitting δ, δ′-shocks, and vacuum states (the vanishing viscosity approach). J. Differ. Equ. 231, 459–500 (2006)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Cheng H., Yang H.: Delta shock waves in chromatography equations. J. Math. Anal. Appl. 380, 475–485 (2011)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Cheng H., Yang H.: Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow. Acta Appl. Math. 113, 323–348 (2011)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Lax P.: Hyperbolic system of conservation laws II. Comm. Pure Appl. Math. 10, 537–566 (1957)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Li J., Li W.: Riemann problem for the zero-pressure flow in gas dynamics. Prog. Nat. Sci. 11, 331–344 (2001)Google Scholar
  34. 34.
    Li Z., Sheng W.: The Riemann problem of adiabatic Chaplygin gas dynamic system. Commun. Appl. Math. Comput. 24, 9–16 (2010)MathSciNetMATHGoogle Scholar
  35. 35.
    Cheng H., Yang H., Zhang Y.: Riemann problem for the Chaplygin Euler equations of compressible fluid flow. Int. J. Nonlinear Sci. Num. 11, 985–992 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Department of MathematicsYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations