Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity

Article

Abstract

We prove the uniqueness for weak solutions of the time-dependent 2-D Ginzburg-Landau model for superconductivity with L2 initial data in the case of Coulomb gauge. This question was left open in Tang and Wang (Physica D, 88:139–166, 1995). We also prove the uniqueness of the 3-D radially symmetric solution in bounded annular domain with the choice of Lorentz gauge and L2 initial data.

Mathematics Subject Classification (2000)

35K55 

Keywords

Uniqueness Ginzburg-Landau model Superconductivity Coulomb gauge Lorentz gauge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen Z.M., Elliott C., Tang Q.: Justification of a two-dimensional evolutionary Ginzburg-Landau superconductivity model. RAIRO Model. Math. Anal. Numer. 32, 25–50 (1998)MathSciNetMATHGoogle Scholar
  2. 2.
    Chen Z.M., Hoffmann K.H.: Global classical solutions to a non-isothermal dynamical Ginzburg-Landau model in superconductivity. Numer. Funct. Anal. Optim. 18, 901–920 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Chen Z.M., Hoffmann K.H., Liang J.: On a nonstationary Ginzburg-Landau superconductivity model. Math. Methods Appl. Sci. 16, 855–875 (1993)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Danchin R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Du Q.: Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 521, 1–17 (1994)CrossRefGoogle Scholar
  6. 6.
    Fan J.: The long-time behavior of the transient Ginzburg-Landau equations of superconductivity II. Appl. Math. Lett. 9(5), 107–109 (1996)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fan J., Gao H.: Uniqueness of weak solutions in critical spaces of the 3-D time-dependent Ginzburg-Landau equations for superconductivity. Math. Nachr. 283(8), 1134–1143 (2010)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fan J., Jiang S.: Global existence of weak solutions of a time-dependent 3-D Ginzburg-Landau model for superconductivity. Appl. Math. Lett. 16, 435–440 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Koch H., Tataru D.: Well-posedness for the Navier-Stokes equations. Adv. Math. 157(1), 22–35 (2001)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Liang J.: The regularity of solutions for the curl boundary problems and Ginzburg-Landau superconductivity model. Math. Model. Methods Appl. Sci. 5, 528–542 (1995)CrossRefGoogle Scholar
  11. 11.
    Phillips D., Shin E.: On the analysis of a non-isothermal model for superconductivity. Eur. J. Appl. Math. 15, 147–179 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Tang Q.: On an evolutionary system of Ginzburg-Landau equations with fixed total magnetic flux. Commun. PDE 20, 1–36 (1995)MATHGoogle Scholar
  13. 13.
    Tang Q., Wang S.: Time dependent Ginzburg-Landau equation of superconductivity. Physica D 88, 139–166 (1995)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wang B.X.: Uniqueness of solutions for the Ginzburg-Landau model of superconductivity in three spatial dimensions. J. Math. Anal. Appl. 266, 1–20 (2002)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Zaouch F.: Time-periodic solutions of the time-dependent Ginzburg-Landau equations of surperconductivity. Z Angew Math. Phys. 54, 905–918 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zhan M.: Well-posedness of phase-lock equations of superconductivity. Appl. Math. Lett. 18(11), 1210–1215 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Applied MathematicsNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.Department of Applied PhysicsWaseda UniversityTokyoJapan

Personalised recommendations