Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions

  • Virginie Bonnaillie-Noël
  • Monique Dauge
  • Nicolas Popoff
  • Nicolas Raymond
Article

Abstract

We study the eigenpairs of a model Schrödinger operator with a quadratic potential and Neumann boundary conditions on a half-plane. The potential is degenerate in the sense that it reaches its minimum all along a line that makes the angle θ with the boundary of the half-plane. We show that the first eigenfunctions satisfy localization properties related to the distance to the minimum line of the potential. We investigate the densification of the eigenvalues below the essential spectrum in the limit θ → 0, and we prove a full asymptotic expansion for these eigenvalues and their associated eigenvectors. We conclude the paper by numerical experiments obtained by a finite element method. The numerical results confirm and enlighten the theoretical approach.

Mathematics Subject Classification (2000)

Primary 99Z99 Secondary 00A00 35P15 35P20 41A60 65N25 65N30 

Keywords

Agmon estimates Born-Oppenheimer approximation Schrödinger operator Semi classical limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators, volume 29 of Mathematical Notes. Princeton University Press, Princeton, NJ (1982)Google Scholar
  2. 2.
    Agmon, S.: Bounds on exponential decay of eigenfunctions of Schrödinger operators. In: Schrödinger Operators (Como, 1984), volume 1159 of Lecture Notes in Math. pp. 1–38. Springer, Berlin (1985)Google Scholar
  3. 3.
    Bernoff A., Sternberg P.: Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39(3), 1272–1284 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bonnaillie-Noël, V.: Harmonic oscillators with Neumann condition on the half-line. Commun. Pure Appl. Anal. (2011, to appear)Google Scholar
  5. 5.
    Chenaud B., Duclos P., Freitas P., Krejčiřík D.: Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23(2), 95–105 (2005)MATHCrossRefGoogle Scholar
  6. 6.
    Cycon H.L., Froese R.G., Kirsch W., Simon B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics Study. Springer, Berlin (1987)Google Scholar
  7. 7.
    Dauge M., Helffer B.: Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators. J. Differ. Equ. 104(2), 243–262 (1993)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Duclos P., Exner P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7(1), 73–102 (1995)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Fournais S., Helffer B.: Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications 77. Birkhäuser Boston Inc, Boston, MA (2010)Google Scholar
  10. 10.
    Helffer B.: Semi-classical Analysis for the Schrödinger Operator and Applications, volume 1336 of Lecture Notes in Mathematics. Springer, Berlin (1988)Google Scholar
  11. 11.
    Helffer, B., Morame, A.: Magnetic bottles for the Neumann problem: the case of dimension 3. Proceedings of Indian Academy of Science and Mathematical Sciences 112(1), 71–84 (2002). Spectral and inverse spectral theory (Goa, 2000)Google Scholar
  12. 12.
    Helffer B., Sjöstrand J.: Multiple wells in the semiclassical limit. I. Comm. Partial Differ. Equ. 9(4), 337–408 (1984)MATHCrossRefGoogle Scholar
  13. 13.
    Ismail M.E.H., Zhang R.: On the Hellmann-Feynman theorem and the variation of zeros of certain special functions. Adv. Appl. Math. 9(4), 439–446 (1988)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 editionGoogle Scholar
  15. 15.
    Lu, K., Pan, X.-B.: Surface nucleation of superconductivity in 3-dimensions. J. Differ. Equ. 168(2), 386–452 (2000). Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998)Google Scholar
  16. 16.
    Martin, D.: Mélina, bibliothèque de calculs éléments finis. http://anum-maths.univ-rennes1.fr/melina (2010)
  17. 17.
    Martinez A.: Développements asymptotiques et effet tunnel dans l’approximation de Born-Oppenheimer. Ann. Inst. H. Poincaré Phys. Théor. 50(3), 239–257 (1989)MATHGoogle Scholar
  18. 18.
    Morame A., Truc F.: Remarks on the spectrum of the Neumann problem with magnetic field in the half-space. J. Math. Phys. 46(1), 012105, 13 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Persson A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8, 143–153 (1960)MathSciNetMATHGoogle Scholar
  20. 20.
    Raymond N.: Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2. Ann. Henri Poincaré 10(1), 95–122 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Raymond N.: On the semi-classical 3D Neumann Laplacian with variable magnetic field. Asymptot. Anal. 68(1–2), 1–40 (2010)MathSciNetMATHGoogle Scholar
  22. 22.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)MATHGoogle Scholar
  23. 23.
    Schatzman, M.: Analyse numérique. InterEditions, Paris 1991. Cours et exercices pour la licence. [Course and exercises for the bachelor’s degree]Google Scholar
  24. 24.
    Višik M.I., Ljusternik L.A.: Regular degeneration and boundary layer for linear differential equations with small parameter. Am. Math. Soc. Transl. (2) 20, 239–364 (1962)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Virginie Bonnaillie-Noël
    • 1
  • Monique Dauge
    • 2
  • Nicolas Popoff
    • 2
  • Nicolas Raymond
    • 2
  1. 1.IRMAR, ENS Cachan BretagneUniversité de Rennes 1, CNRS, UEBBruzFrance
  2. 2.IRMARUniversité de Rennes 1, CNRSRennes cedexFrance

Personalised recommendations