Asymptotic modelling of conductive thin sheets

Article

Abstract

We derive and analyse models which reduce conducting sheets of a small thickness ε in two dimensions to an interface and approximate their shielding behaviour by conditions on this interface. For this we consider a model problem with a conductivity scaled reciprocal to the thickness ε, which leads to a nontrivial limit solution for ε → 0. The functions of the expansion are defined hierarchically, i.e. order by order. Our analysis shows that for smooth sheets the models are well defined for any order and have optimal convergence meaning that the H1-modelling error for an expansion with N terms is bounded by O(εN+1) in the exterior of the sheet and by O(εN+1/2) in its interior. We explicitly specify the models of order zero, one and two. Numerical experiments for sheets with varying curvature validate the theoretical results.

Mathematics Subject Classification (2000)

65N30 35C20 35J25 41A60 35B40 78M30 78M35 

Keywords

Asymptotic expansions Model reduction Thin sheets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoine X., Barucq H., Vernhet L.: High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 26(3–4), 257–283 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Bartoli N., Bendali A.: Robust and high-order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer. IMA J. Appl. Math. 67, 479–508 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bendali A., Lemrabet K.: The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 6, 1664–1693 (1996)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bendali A., Lemrabet K.: Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57(3–4), 199–227 (2008)MATHMathSciNetGoogle Scholar
  5. 5.
    Biro O., Preis K., Richter K., Heller R., Komarek P., Maurer W.: FEM calculation of eddy current losses and forces in thin conducting sheets of test facilities for fusion reactor components. IEEE Trans. Magn. 28(2), 1509–1512 (1992)CrossRefGoogle Scholar
  6. 6.
    Bottauscio O., Chiampi M., Manzin A.: Transient analysis of thin layers for the magnetic field shielding. IEEE Trans. Magn. 42(4), 871–874 (2006)CrossRefGoogle Scholar
  7. 7.
    Braess D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)MATHCrossRefGoogle Scholar
  8. 8.
    Caloz G., Costabel M., Dauge M., Vial G.: Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptot. Anal. 50(1), 121–173 (2006)MATHMathSciNetGoogle Scholar
  9. 9.
    Chechurin V., Kalimov A., Minevich L., Svedentsov M., Repetto M.: A simulation of magneto-hydrostatic phenomena in thin liquid layers of an aluminum electrolytic cell. IEEE Trans. Magn. 36(4), 1309–1312 (2000)CrossRefGoogle Scholar
  10. 10.
    Concepts Development Team. Webpage of Numerical C++ Library Concepts 2. http://www.concepts.math.ethz.ch (2008)
  11. 11.
    Duruflé M., Haddar H., Joly P.: Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Physique 7(5), 533–542 (2006)CrossRefGoogle Scholar
  12. 12.
    Frauenfelder P., Lage C.: Concepts—an object-oriented software package for partial differential equations. M2AN Math. Model. Numer. Anal. 36(5), 937–951 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Guérin C., Tanneau G., Meunier G., Labie P., Ngnegueu T., Sacotte M.: A shell element for computing 3D eddy currents—application to transformers. IEEE Trans. Magn. 31(3), 1360–1363 (1995)CrossRefGoogle Scholar
  14. 14.
    Gyselinck J., Sabariego R.V., Dular P., Geuzainehin C.: Time-domain finite-element modeling of thin electromagnetic shells. IEEE Trans. Magn. 44(6), 742–745 (2008)CrossRefGoogle Scholar
  15. 15.
    Haddar H., Joly P., Nguyen H.-M.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15(8), 1273–1300 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Igarashi H., Kost A., Honma T.: A boundary element analysis of magnetic shielding for electron microscopes. COMPEL 17(5/6), 585–594 (1998)MATHGoogle Scholar
  17. 17.
    Igarashi H., Kost A., Honma T.: Impedance boundary condition for vector potentials on thin layers and its application to integral equations. Eur. Phys. J. AP 1, 103–109 (1998)CrossRefGoogle Scholar
  18. 18.
    Krähenbühl L., Muller D.: Thin layers in electrial engineering. Example of shell models in analysing eddy-currents by boundary and finite element methods. IEEE Trans. Magn. 29, 1450–1455 (1993)CrossRefGoogle Scholar
  19. 19.
    Leontovich, M.A.: On approximate boundary conditions for electromagnetic fields on the surface of highly conducting bodies (in russian). Research in the propagation of radio waves, pp. 5–12. Moscow, Academy of Sciences (1948)Google Scholar
  20. 20.
    Mayergoyz I.D., Bedrosian G.: On calculation of 3-D eddy currents in conducting and magnetic shells. IEEE Trans. Magn. 31(3), 1319–1324 (1995)CrossRefGoogle Scholar
  21. 21.
    Miri A.M., Riegel N.A., Meinecke C.: FE calculation of transient eddy currents in thin conductive sheets using dynamic boundary conditions. Int. J. Numer. Model. 11, 307–316 (1998)MATHCrossRefGoogle Scholar
  22. 22.
    Nakata T., Takahashi N., Fujiwara K., Shiraki Y.: 3D magnetic field analysis using special elements. IEEE Trans. Magn. 26(5), 2379–2381 (1990)CrossRefGoogle Scholar
  23. 23.
    Péron V., Poignard, C.: Approximate transmission conditions for time-harmonic Maxwell equations in a domain with thin layer. Research Report RR-6775, INRIA (2008)Google Scholar
  24. 24.
    Poignard, C.: Approximate transmission conditions through a weakly oscillating thin layer. Math. Methods Appl. Sci. 32, 4 (2009)Google Scholar
  25. 25.
    Safa Y., Flueck M., Rappaz J.: Numerical simulation of thermal problems coupled with magnetohydrodynamic effects in aluminium cell. Appl. Math. Modell. 33(3), 1479–1492 (2009)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sauter S., Schwab C.: Randelementmethoden, B.G. Teubner-Verlag, Stuttgart (2004)Google Scholar
  27. 27.
    Schmidt, K.: High-order numerical modelling of highly conductive thin sheets. PhD thesis, ETH Zürich (2008)Google Scholar
  28. 28.
    Senior T., Volakis J.: Approximate Boundary Conditions in Electromagnetics. Institution of Electrical Engineers, London (1995)MATHGoogle Scholar
  29. 29.
    Shchukin A.N.: Propagation of Radio Waves (in russian). Svyazizdat, Moscow (1940)Google Scholar
  30. 30.
    Yosida K.: Lectures on Differential and Integral Equations. Dover, New York (1991)MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Project POEMSINRIA Paris-RocquencourtLe ChesnayFrance
  2. 2.Mathematical Institute of Toulouse (UMR CNRS 5219)Toulouse University, INSA-ToulouseToulouse Cedex 4France

Personalised recommendations