Milan Journal of Mathematics

, Volume 87, Issue 2, pp 283–301 | Cite as

Well-posedness of the Initial Value Problem for the Ostrovsky–Hunter Equation with Spatially Dependent Flux

  • G. M. Coclite
  • N. ChatterjeeEmail author
  • N. H. Risebro


In this paper we study the Ostrovsky–Hunter equation for the case where the flux function f(x, u) may depend on the spatial variable with certain smoothness. Our main results are that if the flux function is smooth enough (namely fx(x, u) is uniformly Lipschitz locally in u and fu(x, u) is uniformly bounded), then there exists a unique entropy solution. To show the existence, after proving some a priori estimates we have used the method of compensated compactness and to prove the uniqueness we have employed the method of doubling of variables.

Mathematics Subject Classification (2010)

Primary: 35L35 35G25 Secondary: 45M10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Amadori, D., Gosse, L., Guerra, G.: Godunov-type approximation for a general resonant balance law with large data. J. Differential Equations 198(2), 233–274 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    S. Amiranashvili, A.G. Vladimirov, and U. Bandelow, A model equation for ultrashort optical pulses, WIAS, 2008Google Scholar
  3. 3.
    Bardos, C., le Roux, A.Y., Nédélec, J.C.: First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations 4(9), 1017–1034 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Boutet de Monvel and D. Shepelsky, The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach, J. Phys. A 48 no. 3 (2015), 035204, 34MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brunelli, J.C., Sakovich, S.: Hamiltonian structures for the Ostrovsky-Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(1), 56–62 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    N. Chatterjee and N.H. Risebro, The Ostrovsky Hunter equation with a space dependent flux function, arXiv e-prints (2018), arXiv:1812.08463
  7. 7.
    Coclite, G.M., di Ruvo, L.: Well-posedness and dispersive/diffusive limit of a generalized Ostrovsky-Hunter equation. Milan J. Math. 86(1), 31–51 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Coclite, G.M., di Ruvo, L.: Oleinik type estimates for the Ostrovsky-Hunter equation. J. Math. Anal. Appl. 423(1), 162–190 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Coclite, G.M., di Ruvo, L.: Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky-Hunter equation. J. Hyperbolic Differ. Equ. 12(2), 221–248 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Coclite, G.M., di Ruvo, L.: Well-posedness results for the short pulse equation. Z. Angew. Math. Phys. 66(4), 1529–1557 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Coclite, G.M., di Ruvo, L.: Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short-wave dispersion. J. Evol. Equ. 16(2), 365–389 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    G.M. Coclite, L. di Ruvo, and K.H. Karlsen, Some wellposedness results for the Ostrovsky-Hunter equation, in: Hyperbolic conservation laws and related analysis with applications, Springer Proc. Math. Stat., vol. 49, Springer, Heidelberg, 2014, pp. 143– 159Google Scholar
  13. 13.
    Coclite, G.M., Holden, H., Karlsen, K.H.: Wellposedness for a parabolic-elliptic system. Discrete Contin. Dyn. Syst. 13(3), 659–682 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Coclite, G.M., Karlsen, K.H., Kwon, Y.S.: Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation. J. Funct. Anal. 257(12), 3823–3857 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Coclite, G.M., Mishra, S., Risebro, N.H.: Convergence of an Engquist-Osher scheme for a multi-dimensional triangular system of conservation laws. Math. Comp. 79(269), 71–94 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Coclite, G.M., Ridder, J., Risebro, N.H.: A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain. BIT 57(1), 93–122 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L. di Ruvo, Discontinuous solutions for the Ostrovsky-Hunter equation and two-phase flows, Ph.D. thesis, University of Bari, 2013Google Scholar
  18. 18.
    Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall Inc, Englewood Cliffs, N.J. (1964)zbMATHGoogle Scholar
  19. 19.
    Gallego, F.A., Pazoto, A.F.: On the well-posedness and asymptotic behaviour of the generalized Korteweg-deVries-Burgers equation. Proc. Roy. Soc. Edinburgh Sect. A 149(1), 219–260 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Grimshaw, R.: Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud. Appl. Math. 65(2), 159–188 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Grimshaw, R.: Internal solitary waves, pp. 1–27. Springer, New York (2002)Google Scholar
  22. 22.
    Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. Lect. Appl. Math 26, 301–316 (1990)MathSciNetGoogle Scholar
  23. 23.
    J.K. Hunter and K.P. Tan, Weakly dispersive short waves, in: Proceedings of the IVth international Congress on Waves and Stability in Continuous Media, 1987Google Scholar
  24. 24.
    Johnson, R.S.: On the development of a solitary wave moving over an uneven bottom. Proc. Cambridge Philos. Soc. 73, 183–203 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39 no. 240 (1895), 422–443Google Scholar
  26. 26.
    Kružkov, S.N.: First order quasilinear equations in several independent variables. Mathematics of the USSR-Sbornik 10(2), 217–243 (1970)CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the short-pulse equation. Dyn. Partial Differ. Equ. 6(4), 291–310 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    F. Murat, L'injection du cône positif de \(H^{-1}\) dans \(W^{-1, q}\) est compacte pour tout \(q < 2\), J. Math. Pures Appl. (9) 60 no. 3 (1981), 309–322Google Scholar
  29. 29.
    Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Oceanology 18(2), 119–125 (1978)Google Scholar
  30. 30.
    Panov, E.Y.: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Arch. Ration. Mech. Anal. 195(2), 643–673 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Parkes, E.J.: Explicit solutions of the reduced Ostrovsky equation. Chaos Solitons Fractals 31(3), 602–610 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    J. Ridder and A.M. Ruf, A convergent finite difference scheme for the ostrovsky–hunter equation with dirichlet boundary conditions, arXiv e-prints (2018), arXiv:1805.07255
  33. 33.
    Shu, J.J.: The proper analytical solution of the Korteweg-deVries-Burgers equation. J. Phys. A 20(2), L49–L56 (1987)zbMATHCrossRefGoogle Scholar
  34. 34.
    Stepanyants, Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    L. Tartar, Compensated compactness and applications to partial differential equations, in: Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212Google Scholar
  36. 36.
    Vakhnenko, V.O.: Solitons in a nonlinear model medium. J. Phys. A 25(15), 4181–4187 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Vakhnenko, V.O., Parkes, E.J.: The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fractals 13(9), 1819–1826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Varlamov, V., Liu, Y.: Cauchy problem for the Ostrovsky equation. Discrete Contin. Dyn. Syst. 10(3), 731–753 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Meccanica, Matematica e ManagementPolitecnico di BariBariItaly
  2. 2.Department of MathematicsUniversity of OsloBlindernNorway

Personalised recommendations